芯片革命:Multi-Die系统引领电子设计进阶之路

描述

 

 

是什么推动了Multi-Die系统的发展?由于AI、超大规模数据中心、自动驾驶汽车等应用的高速发展,单片片上系统(SoC)已经不足以满足人们对芯片的需求了。Multi-Die系统是在单个封装中集成了多个裸片或小芯片(chiplets),因此系统规模十分庞大和复杂,但对于解决不断趋近极限的摩尔定律和系统复杂性挑战而言,Multi-Die无疑是非常不错的方案。

 

 

Multi-Die系统内部各组件之间相互依赖,虽然在流片之前的步骤与SoC相似,但若想实现出色的PPA,就必须从概念到生产进行全局性的开发,从非常全面的角度完成整个过程。

 

  • 如何才能确保Multi-Die系统按预期运行?
  • 如何高效地完成相关工作?
  • 从系统角度看,从设计探索到现场监测,需要考虑的关键步骤都有哪些?

 

今天就与各位开发者一起讨论下这几个问题。

 

适用于单片片上系统的技术未必适合Multi-Die系统架构。幸运的是,支持Multi-Die系统的生态系统正在迅速走向成熟,为设计团队提供了各种工具来实现这些系统具备的优势:

 

 
  • 以经济高效的方式更快地扩展系统功能

  • 降低风险并缩短上市时间

  • 降低系统功耗并提高吞吐量

  • 快速打造新的产品型号

     

实现Multi-Die系统架构通常有两种方式。

 

 一是分解法,即将一个大芯片分解成几个小芯片,与单个大芯片相比,这样可以提高系统良率并降低成本。这种方法适用于异构和同构设计。  不同工艺裸片进行组装,以达到优化系统功能和性能的目的这类系统可能包含分别用于数字计算、模拟、存储和光学计算的裸片,并且每个裸片各自采用适合其目标功能的工艺技术。从长远来看,与大型单片片上系统相比,包含多个小裸片的设计能够显著提高制造良率。  硅中介层、重布线层(RDL)和混合键合封装等先进封装技术的出现为Multi-Die系统的发展铺平了道路。各项行业标准也在保障质量、一致性和互操作性方面发挥着重要作用,例如适用于高密度内存的HBM3和适用于安全Die-to-Die连接的UCIe  Multi-Die系统的设计和验证流程也是一个挑战。在2D设计领域,团队通常只要完成自己的部分,然后将成果交给下一个团队即可。对于Multi-Die系统,团队需要一起应对各项挑战,合作分析功耗、信号完整性、邻近效应和散热等参数的相互影响。  不仅Multi-Die系统设计过程中需要全面考量整个过程,EDA公司在开发工具流程时也需要全面地思考。一个可扩展、可靠且全面的统一Multi-Die系统解决方案可以提高生产力,同时助力团队实现PPA目标及时上市  点击阅读原文,下载白皮书《Multi-Die系统如何推动电子设计变革:一种全面的异构晶粒集成方法》,进一步了解如何从Multi-Die系统的角度来阐述架构探索、系统实现、Die-to-Die连接、软件开发、验证、签核、芯片生命周期管理和测试等步骤。

 


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分