电子说
放大器的失调电压是工程师在直流耦合电路设计中,评估频次极高的参数,本篇通过一个案例介绍失调电压的影响方式,以及探讨产生原因。
01
由失调电压导致故障的一则案例
2019年8月11日(星期日)晚,笔者接到负责电源领域同事的信息,一家上市公司在汽车电子领域首款产品的小批量生产测试中出现异常,其中使用ADI放大器设计的电路发生“失效”问题,急需申请失效分析。8月12日上午现场拜访该企业,工程师讲述电路设计不存在问题,并且通过ADI官方指定渠道购买15片ADA4851-1,其中2片芯片所在的板卡出现“失效”,将“失效”板卡中ADA4851-1芯片与正常工作板卡的ADA4851-1芯片进行互换,“失效”现象跟随“异常芯片”继续复现,因此要求进行失效分析。
面对上述问题的现象描述,笔者无法定位问题的根源。与项目组负责人详细了解电路图和测试过程。如图2.7,使用ADA4851-1组建差动放大电路,电路由+5V单电源供电,TP1000网络由参考电压源提供。工作中在输入端TP1001网络与TP1006网络连接到地时,如果ADA4851-1的输出端(TP1011网络)电压超出±38.7mV时,系统判定电路出现异常并终止工作,上述2片“异常芯片”的输出电压均超过±38.7mV。
图2.7ADA4851-1应用电路
参考ADA4851-1的电气参数进行分析,如图2.8。在25℃环境中,+5V供电,电路增益为1时,输入失调电压的典型值为0.6mV ,最大值为3.4mV。
图2.8 ADA4851-1输入失调电压
假定图2.7中的比例电阻完全匹配,即R1000与R1010为220Ω,R1001与R1011为12KΩ。该差动放大电路的增益为54.4倍。输入失调电压经过放大后的输出应为32.7mV(典型值)时电路正常工作,但是失调电压最大值对应的输出值为185.5mV,已经超出判定故障的阈值电压。并且在+5V电压供电时,ADA4851-1失调电压的分布如图2.9,输入失调电压为±1mV的情况出现频次较高,此时对应的输出电压为±54.4mV,同样超出系统判定的阈值电压。
图2.9 ADA4851-1输入失调电压分布
所以笔者与工程师确认,现有ADA4851-1应用电路的输出电压折算到输入端,均在数据手册参数范围内,工作不存在失效问题,该电路的软件判定阈值设计不合理,建议整改办法包括:
(1)调整判定故障的阈值电压。
(2)使用低失调电压的放大器,并类比ADA4528,在25℃环境中,+5V供电时,失调电压最大值仅为2.5uV 如图2.10。失调电压的分布更为集中,如图2.11。
图2.10 ADA4528-1电调电压
图2.11 ADA4528-1失调电压分布
通过该案例可见,失调电压的存在,导致电路输出产生直流误差 。
02
失调电压与漂移定义
如图2.12(a)为放大器模型,短路放大器的两个输入端(Vp、Vn),如果是理想放大器其输出电压Vo应为0V。但是,真实放大器内部处理Vp与Vn的输入级存在失配,导致放大器的输出不为0V。为了使真实放大器的输出实现0V,需要在输入管脚之间增加适合的校正电压,称为失调电压(Offset voltage,Vos)。
如图2.12(b),真实放大器的电压传递曲线(VTC)不会过原点,它向左移还是右移由失配的方向决定。可以理解为在理想或无失调电压放大器的一个输入端串联一个小电压源Vos,其电压传递曲线如式2-1。
为了实现输出电压为0V,需要满足式2-2。
所以放大器的两个输入端电压关系是近似相等,即“虚短”原则。 Vos的取值范围在毫伏到微伏。
图2.12 具有失调电压的放大器模型和电压传递曲线
对于某个放大器的失调电压是确定值,但是放大器会因为温度、工作时间变化,使输入失调电压产生随其变化量比值的变化,该比值称为失调电压漂移(Offset Voltage Drift)。
(1)变量为温度,单位是μV/℃,表示输入失调电压的变化量与导致该变化的温度变化量的比值。数据手册提供的参数为测量温度范围内的平均值,符号为ΔVOS/ΔT,或者dVOS/dT。
考虑温度漂移的失调电压,为式2-3。
如图2.2,以ADA4077-1 SOIC封装 B级芯片为例,在25℃环境中,供电电压为±15V,失调电压最大值为35μV,失调电压漂移最大值为0.25μV/℃。当芯片温度上升到75℃时,将参数代入式2-3计算失调电压变化为47.5μV。
图2.2 ADA4077失调电压与温漂
(2)变量为时间,单位是μV/Mo,表示失调电压每月变化多少微伏。代表放大器在长期工作中失调电压的稳定性。
如图2.18,ADA4077数据手册提供实测10000小时失调电压漂移。工程师以此模拟系统长期运行,可以评估在设备长期工作中放大器失调电压的稳定情况。
失调电压漂移是放大器电路设计中难以处理的参数,因为它的存在随时会产生新的失调电压,所以常见的处理方法是使用失调电压漂移参数小的放大器。
图2.18 ADA4077实测10000小时的失调电压长期漂移
03
失调电压产生原因
(1)输入级的制造工艺
放大器输入失调电压的产生,主要由于输入级对称三极管晶圆的不匹配所导致。如图2.13,三极管(Q1,Q2)的匹配度,在一定范围内和晶圆面积的平方根成正比,就是说匹配度提高到原来的两倍,晶圆面积就是原来的四倍。当达到一定水平后,增加晶圆面积也不能改善输入失调电压,另外增加面积会直接增加芯片的制造成本。所以,常用的方法是在放大器生产后再进行测试与校准,或者在输出级使用斩波等技术改善放大器的失调电压。
图2.13放大器输入级电路
如表2.1为ADI不同种类放大器的失调电压范围,及代表型号。
表2.1 多类放大器的失调电压范围和代表型号
(2)芯片封装技术
放大器的封装类型,通常包括SOIC、MSOP、LFCSP、SOT-23几种,大多数放大器的封装不会影响失调电压。如图2.14所示ADA4528-1 有MSOP、LFCSP封装两种,失调电压的典型值,最大值、最小值没有因为封装而不同,如图2.10。
图2.14 ADA4528-1封装示意图
但是少数放大器的封装技术会影响放大器的失调电压。如图2.2,ADA4077-2 A级的MSOP封装芯片的失调电压最大值为90μV,典型值为50μV。同等条件下SOIC封装的ADA4077-2 A级芯片的失调电压最大值为50μV,典型值为15μV。两种封装失调电压的分布也存在明显区别,其中SOIC封装的失调电压分布相对集中,如图2.15。
图2.15 ADA4077-2MSOP与SOIC封装的失调电压分布
注:芯片规格书中常见A级、B级产品,在生产的原材料,制造过程完全一致,区别在封装测试完成以后,将个别较好的参数进行标记。
全部0条评论
快来发表一下你的评论吧 !