电力晶体管的驱动电路与保护电路

电子说

1.3w人已加入

描述

由于电力晶体管既具备晶体管饱和压降低、开关时间短和安全工作区宽等固有特性,又增大了功率容量; 因此由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。 缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏,所以为了解决这些问题,电力晶体管设置了驱动电路与保护电路,它们有什么功能? 下面一起来看看:

1.驱动电路

驱动电路性能不好,轻则使电力晶体管不能正常工作,重则导致电力晶体管损坏。 其特性是决定电流上升率和动态饱和压降大小的重要因素之一。 增加基极驱动电流使电流上升率增大,使电力晶体管饱和压降降低,从而减小开通损耗。 过大的驱动电流,使电力晶体管饱和过深,退出饱和时间越长,对开关过程和减小关断损耗越不利。 驱动电路是否具有快速保护功能,是决定电力晶体管在过电压或过电流后是否损坏的关键因素之一。

电力晶体管的驱动电路种类很多,下面介绍一种分立元件电力晶体管的驱动电路,如图1所示。 电路由电气隔离和晶体管放大电路两部分构成。 电路中的二极管VD2和电位补偿二极管VD3组成贝克箝位抗饱和电路,可使电力晶体管导通时处于临界饱和状态。 当负载轻时,如果V5的发射极电流全部注入V,会使V过饱和,关断时退饱和时间延长。 有了贝克电路后,当V过饱和使得集电极电位低于基极电位时,VD2就会自动导通,使得多余的驱动电流流入集电极,维持Ubc≈0。 这样,就使得V导通时始终处于临界饱和。 图中的C2为加速开通过程的电容,开通时,R5被C2短路。 这样就可以实现驱动电流的过冲,同时增加前沿的陡度,加快开通。 另外,在V5导通时C2充电,充电的极性为左正右负,为电力晶体管的关断做做准备。 当V5截止V6导通时,C2上的充电电压为V管的发射结施加反电压,从而电力晶体管迅速关断。

电力晶体管

图1 分立元件电力晶体管的驱动电路

2.保护电路

(1)过电流、短路保护

由于电力晶体管存在二次击穿等问题,而且二次击穿很快,远远小于快速熔断器的熔断时间,因此诸如快速熔断器之类的过电流保护方法对电力晶体管类电力电子设备来说是无用的。

电力晶体管的过电流保护要依赖于驱动和特殊的保护电路。

(a)电压状态识别保护

当电力晶体管处于过载或短路故障状态时,随着集电极电流的急剧增加,其基射极电压和集射极电压均发生相应变化,可利用这一特点对电力晶体管进行过载和短路保护。 电路图如图2所示。

电力晶体管

图2 电压识别保护电路

(b)桥臂互锁保护

逆变器运行时,可能发生桥臂短路故障,造成器件损坏。 只有确认同一桥臂的一个电力晶体管关断后,另一个电力晶体管才能导通。 这样能防止两管同时导通,避免桥臂短路。

电力晶体管的热容量极小,过电流能力很低,要求故障检测、信号传送及保护动作能瞬间完成,要在微秒级的时间内将电流限制在过载能力的限度以内。

(2)欠饱和过饱和保护

电力晶体管的二次击穿多由于电力晶体管工作于过饱和状态引起的,而过基极驱动引起的过饱和又使电力晶体管的存储时间不必要地加长,直接影响着电力晶体管的开关频率,所以电力晶体管的过饱和及欠饱和保护对它的安全可靠工作有着极其重要的作用。 通常欠饱和保护可根据被驱动电力晶体管的基射极电压降的高低来自动调节基极驱动电流的大小,构成准饱和基极驱动器来完成。

以上就是电力晶体管的驱动与保护介绍了。 电力晶体管与一般双极型晶体管有相似的结构、工作原理和特性。 它们都是3层半导体,2个PN结的三端器件,有PNP和NPN这2种类型; 但是,目前电力晶体管多采用NPN型。

审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分