得到能量的电子为何不能长留高能级轨道上呢?

描述

我们都知道,原子由原子核和电子组成,电子在原子核周围按照一定的规律运动,这些规律可以用量子力学来描述,简单地说,就是电子只能存在于一些特定的能级上,每个能级对应一个特定的轨道。电子在同一个轨道上运动时,它的能量是恒定的,不会发生变化。但是,电子也可以从一个轨道跳到另一个轨道,这就是我们常说的电子跃迁。

电磁场

电子跃迁可以分为辐射跃迁和无辐射跃迁。辐射跃迁是指电子在不同轨道之间发生跃迁时,伴随着光或其他电磁波的吸收或发射。无辐射跃迁是指电子在不同轨道之间发生跃迁时,不伴随着光或其他电磁波的吸收或发射,而是通过与其他粒子碰撞等方式交换能量。

那么,电子跃迁是怎么发生的呢?根据能量守恒原理,粒子的外层电子从低能级转移到高能级的过程中会吸收能量;从高能级转移到低能级则会释放能量。那么问题来了:既然电子得到了更多的能量,并且存在于更高的轨道上,为什么它不能一直保持在那里呢?为什么它还要再次释放掉多余的能量,并且回到低能级轨道呢? 

这里我们需要引入一个重要的概念,就是微扰。微扰是指外界对原子或分子施加的一种影响,比如光、磁场、电场等。这些影响会改变原来的能级结构,使得原来不可能发生的跃迁变得可能,或者使得原来可能发生的跃迁变得更容易。

举个例子,如果我们用一束光照射一个氢原子,那么这束光就相当于一个微扰。它会使得氢原子中的电子受到一个周期性的电场力作用,从而改变它在不同轨道上运动的概率。如果这束光的频率刚好等于两个轨道之间能量差所对应的频率,那么就有很大可能性触发电子吸收一个光子,从低能级跳到高能级,这就是受激吸收。反之,如果电子本来就在高能级上,并且遇到了一个与其能量差相同频率的光波,那么它也有很大可能性释放出一个光子,并且回到低能级上,这就是受激辐射。 

电磁场

但是,并不是所有情况下都需要外界微扰才能引起电子跃迁。有时候,即使没有任何外界影响,电子也会自发地从高能级回到低能级,并且释放出一个光子,这就是自发辐射。自发辐射是一种不可逆的过程,它使得原子系统向低能态方向演化。 

那么,自发辐射的原理是什么呢?为什么电子会在没有外界微扰的情况下突然放出一个光子呢?这里我们需要引入一个更深层次的概念,就是量子涨落。简单来说,自发辐射是由于原子与真空场的量子涨落相互作用而产生的。

真空场并不是完全平静的,而是存在着无穷多个模式,每个模式都有一个最小能量,称为零点能。这些模式会随机地波动,导致电磁场在空间和时间上有微小的变化。当一个原子处于激发态时,它会感受到真空场的波动,并以一定的概率跃迁到基态,同时放出一光子。这就是自发辐射的本质。





审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分