物理学家在新的维度上揭示了光的量子性质

电子说

1.3w人已加入

描述

伦敦帝国学院的物理学家重现了著名的双缝实验,该实验表明光在时间而不是空间中表现为粒子和波。

该实验依靠的是能够在几分之一秒内改变其光学特性的材料,这些材料可用于新技术或探索物理学的基本问题。  

最初的双缝实验是由托马斯-杨于1801年在英国皇家学会进行的,表明光作为一种波的作用。然而,进一步的实验表明,光实际上既表现为波又表现为粒子,揭示了其量子性质。   这些实验对量子物理学产生了深远的影响,不仅揭示了光的双重粒子和波的性质,还揭示了其他"粒子",包括电子、中子和整个原子。   现在,由伦敦帝国学院物理学家领导的团队已经利用时间而非空间的"狭缝"进行了实验。他们通过向一种在飞秒(四亿分之一秒)内改变其属性的材料发射光来实现这一目标,只允许光在特定时间内快速通过。  

来自帝国理工学院物理系的首席研究员里卡多-萨皮恩扎教授说:"我们的实验揭示了更多关于光的基本性质,同时作为创造能够在空间和时间上细微控制光的终极材料的垫脚石。"  

该实验的详情发表在4月3的《自然-物理》杂志上。   最初的双缝设置涉及将光照向一个不透明的屏幕,屏幕上有两条平行的细缝。屏幕后面是一个检测器,检测通过的光线。  为了以波的形式通过狭缝,光分裂成两个波,分别通过每个狭缝。当这些波在另一侧再次交叉时,它们会相互"干扰"。在波峰相遇的地方,它们会相互增强,但在波峰和波谷相遇的地方,它们会相互抵消。这在探测器上形成了光多和光少区域的条纹图案。   光也可以被分割成被称为光子的"粒子",它们可以被记录下来,一次一次地击中探测器,逐渐建立起条纹状的干涉图案。即使研究人员一次只发射一个光子,干扰图案仍然出现,就像光子一分为二并穿过两个狭缝一样。 

在该实验的经典版本中,从物理狭缝中出现的光会改变其方向,因此干涉图案被写在光的角度轮廓中。相反,新实验中的时间狭缝改变了光的频率,从而改变了其颜色。这创造了相互干扰的光的颜色,增强和抵消了某些颜色,产生了一个干涉型图案。

该团队使用的材料是一层氧化铟锡薄膜,它是构成大多数手机屏幕的基础材料。该材料的反射率被激光器以超快的时间尺度改变,为光创造了"缝隙"。该材料对激光控制的反应比研究小组预期的要快得多,在几飞秒内改变其反射率。

这种材料是一种超材料,它被设计成具有自然界中没有的特性,这种对光的精细控制是形成超材料的基础条件之一,当与空间控制相结合时,可以创造出新的技术,甚至是用于研究黑洞等基本物理现象的类似物。   共同作者John Pendry爵士教授说:"双倍时间狭缝实验为一种全新的光谱学打开了大门,它能够在辐射的一个周期范围内解决光脉冲的时间结构。"   接下来,该团队希望在"时间晶体"中探索这一现象,它类似于原子晶体,但其光学特性随时间变化。   共同作者Stefan Maier教授说:"时间晶体的概念有可能导致超快的、平行的光学开关"。  

       审核编辑 :李倩

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分