大模型(LLMs)现在是 NLP 领域的最主流方法之一了。
这个趋势带来的主要问题之一,就是大模型的训练/微调/推理需要的内存也越来越多。
举例来说,即使 RTX 3090 有着 24GB 的 RAM,是除了 A100 之外显存最大的显卡。但使用一块 RTX 3090 依然无法 fp32 精度训练最小号的 LLaMA-6B。
本文总结一些 Memory-Efficient 的 LLMs 的训练/微调/推理方法,包括:
● fp16
● int8
● LoRA
● Gradient checkpointing
● Torch FSDP
● CPU offloading
估算模型所需的RAM
首先,我们需要了解如何根据参数量估计模型大致所需的 RAM,这在实践中有很重要的参考意义。我们需要通过估算设置 batch_size,设置模型精度,选择微调方法和参数分布方法等。
接下来,我们用LLaMA-6B模型为例估算其大致需要的内存。
首先考虑精度对所需内存的影响:
● fp32 精度,一个参数需要 32 bits, 4 bytes. ● fp16 精度,一个参数需要 16 bits, 2 bytes. ● int8 精度,一个参数需要 8 bits, 1 byte.
其次,考虑模型需要的 RAM 大致分三个部分:
● 模型参数 ● 梯度 ● 优化器参数
模型参数:等于参数量*每个参数所需内存。
对于 fp32,LLaMA-6B 需要 6B*4 bytes = 24GB内存
对于 int8,LLaMA-6B 需要 6B*1 byte = 6GB
梯度:同上,等于参数量*每个梯度参数所需内存。
优化器参数:不同的优化器所储存的参数量不同。
对于常用的 AdamW 来说,需要储存两倍的模型参数(用来储存一阶和二阶momentum)。
fp32 的 LLaMA-6B,AdamW 需要 6B*8 bytes = 48 GB
int8 的 LLaMA-6B,AdamW 需要 6B*2 bytes = 12 GB
除此之外,CUDA kernel也会占据一些 RAM,大概 1.3GB 左右,查看方式如下。
综上,int8 精度的 LLaMA-6B 模型部分大致需要 6GB+6GB+12GB+1.3GB = 25.3GB 左右。
再根据LLaMA的架构(hidden_size = 4096, intermediate_size =11008, num_hidden_layers = 32, context_length = 2048)计算中间变量内存。
每个 instance 需要:
所以一张 A100(80GB RAM)大概可以在 int8 精度;batch_size = 50 的设定下进行全参数训练。
查看消费级显卡的内存和算力:
2023 GPU Benchmark and Graphics Card Comparison Chart
https://www.gpucheck.com/gpu-benchmark-graphics-card-comparison-chart
Fp16-mixed precision
混合精度训练的大致思路是在 forward pass 和 gradient computation 的时候使用 fp16 来加速,但是在更新参数时使用 fp32。
用 torch 实现:
CUDA Automatic Mixed Precision examples
https://pytorch.org/docs/stable/notes/amp_examples.html
torch fp16 推理:直接使用 model.half() 将模型转换为fp16.
使用 Huggingface Transformers:在 TrainingArguments 里声明 fp16=True
https://huggingface.co/docs/transformers/perf_train_gpu_one#fp16-training
Int8-bitsandbytes
Int8 是个很极端的数据类型,它最多只能表示 - 128~127 的数字,并且完全没有精度。
为了在训练和 inference 中使用这个数据类型,bitsandbytes 使用了两个方法最大程度地降低了其带来的误差:
1. vector-wise quantization
2. mixed precision decompasition
Huggingface 在这篇文章中用动图解释了 quantization 的实现:
https://huggingface.co/blog/hf-bitsandbytes-integration
论文:
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scalehttps://arxiv.org/abs/2208.07339
借助 Huggingface PEFT,使用 int8 训练 opt-6.5B 的完整流程:
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb
LoRA
Low-Rank Adaptation 是微调 LLMs 最常用的省内存方法之一。
LoRA 发现再微调 LLMs 时,更新矩阵(update matrix)往往特别 sparse,也就是说 update matrix 是低秩矩阵。LoRA 的作者根据这一特点将 update matrix reparametrize 为两个低秩矩阵的积积 。 其中,,A 和 B 的秩为 r,且 。 如此一来,A+B 的参数量将大大小于 . LoRA 的论文: https://arxiv.org/pdf/2106.09685.pdf
借助 Huggingface PEFT 框架,使用 LoRA 微调 mt0: https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq.ipynb
Gradient Checkpointing
在 torch 中使用 - 把 model 用一个 customize 的 function 包装一下即可,详见:
Explore Gradient-Checkpointing in PyTorch
https://qywu.github.io/2019/05/22/explore-gradient-checkpointing.html 在 Huggingface Transformers 中使用: https://huggingface.co/docs/transformers/v4.27.2/en/perf_train_gpu_one#gradient-checkpointing
Torch FSDP+CPU offload
Fully Sharded Data Paralle(FSDP)和 DeepSpeed 类似,均通过 ZeRO 等分布优化算法,减少内存的占用量。其将模型参数,梯度和优化器状态分布至多个 GPU 上,而非像 DDP 一样,在每个 GPU 上保留完整副本。 CPU offload 则允许在一个 back propagation 中,将参数动态地从 GPU -> CPU, CPU -> GPU 进行转移,从而节省 GPU 内存。 Huggingface 这篇博文解释了 ZeRO 的大致实现方法: https://huggingface.co/blog/zero-deepspeed-fairscale
借助 torch 实现 FSDP,只需要将 model 用 FSDPwarp 一下;同样,cpu_offload 也只需要一行代码: https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
在这个可以查看 FSDP 支持的模型: https://pytorch.org/docs/stable/fsdp.html
在 Huggingface Transformers 中使用 Torch FSDP: https://huggingface.co/docs/transformers/v4.27.2/en/main_classes/trainer#transformers.Trainin
根据某些 issue,shard_grad_op(只分布保存 optimizer states 和 gradients)模式可能比 fully_shard 更稳定: https://github.com/tatsu-lab/stanford_alpaca/issues/32
审核编辑 :李倩
全部0条评论
快来发表一下你的评论吧 !