浅析3D视觉技术学习的难点

人工智能

635人已加入

描述

3D视觉介绍

我们生活在三维空间中,如何智能地感知和探索外部环境一直是个热点难题。2D视觉技术借助强大的计算机视觉和深度学习算法取得了超越人类认知的成就,而3D视觉则因为算法建模和环境依赖等问题,一直处于正在研究的前沿。近年来,3D视觉技术快速发展,并开始结合深度学习算法,在智能制造、自动驾驶、AR/VR、SLAM、无人机、三维重建、人脸识别等领域取得了优异的效果。

3D视觉是计算机视觉的终极体现形式

2D视觉技术主要在二维空间下完成工作,三维信息基本上没有得到任何利用,而三维信息才真正能够反映物体和环境的状态,也更接近人类的感知模式。近年来,学术界和工业界推出了一系列优秀的算法和产品,被广泛应用到各个领域。

学术界:CVPR、ECCV、ICCV三大顶会每年和3D视觉相关主题的文章数量保持在十分之一左右,主要关注3D点云的识别与分割、单目图像深度图的生成、3D物体检测、语义SLAM、三维重建、结构光等。

自动驾驶

 

自动驾驶

 

自动驾驶

工业界:3D视觉技术被广泛应用到人脸识别、智能机器人、自动驾驶、AR等领域,国内外相关公司推出了一系列产品。OPPO、华为和苹果等公司推出的3D+AI识别功能,通过扫描人脸三维结构完成手机解锁;自动驾驶领域通过分析3D人脸信息,判断司机驾驶时的情绪状态;SLAM方式通过重建周边环境,完成建图与感知;AR领域通过三维重建技术完成目标的重现。

自动驾驶

3D视觉技术学习的难点?

3D视觉是一个范围较广的概念,涉及到硬件选型、离散数学、非线性优化、最优化理论、矩阵论、多视图几何、空间变换、点云处理、计算机视觉、SLAM、深度学习等相关知识点,对初学者来说,几乎没有一个完整明确的学习路线可以参考,入门较为困难,难以深入,许多人走了很多弯路还是没有取得较好结果。然而,有价值的东西一般都很难,如果能够完全掌握,一定会非常有竞争力。

目前关于3D视觉的书籍和论文过于零散,初学者很难掌握关键知识点,而且对于一些算法,不能够真正理解,许多人因为较高门槛以及不正确的学习方式,最终选择了放弃,错过了让自己升值的机会。

3D视觉技术学习路线

基于3D视觉领域缺少完整的知识路线,我和几个朋友共同完成了3D视觉技术学习路线总结,并以思维导图的形式呈现出来,主要包括0~16个小结,其中每个小结代表特定区域的知识点。学习路线的总结,需要较宽的知识面,由于自身有一定的知识盲区,若有缺漏之处还望指出,后续将会不断更新维护该学习路线~

自动驾驶

自动驾驶

自动驾驶

自动驾驶

自动驾驶

自动驾驶

自动驾驶

自动驾驶

 

自动驾驶

自动驾驶

自动驾驶

自动驾驶

自动驾驶

 

自动驾驶

自动驾驶

自动驾驶

自动驾驶

编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分