LSM6DSO六轴传感器使用指南

描述

博主最近在调试 lsm6dso,一款集合加速度和陀螺仪的模块,主要运用在手持设备中。

1、前言

LSM6DSO 是 ST 公司的六轴传感器,集成三轴加速度和三轴陀螺仪。

2、传感器特性

  1. 具有数字 I2C、SPI 和 MIPI I3C 串口标准输出,组合工作在高性能模式下功耗只要 0.55 mA。
  2. 满量程加速度范围:±2/±4/±8/±16 g,且角速率范围为 ±125/±250/±500/±1000/±2000 dps。
  3. 经过配置,LSM6DSO 可利用硬件识别出的自由落体事件、6D 方向、单击和双击感应、活动或不活动、唤醒事件,来生成中断信号。
  4. SMD 封装的超小尺寸和重量使其成为手持便携式应用的理想选择,如智能手机、物联网(IoT)连接设备,穿戴,以及需要减小封装尺寸和重量的其他应用,尺寸:2.5 mm x 3 mm x 0.83 mm
  5. 支持 1.71V to 3.6V 供电。

3、参考资料

ST 对于自己出的传感器,都会提供驱动 demo,放在 github,如下:

https://github.com/STMicroelectronics

其中分为不同的平台,有的是仅仅基于 C 语言的平台无关的驱动,有的是基于 STM32,有的是基于 Linux,有的是基于 Android,一开始学习的时候,建议大家下载平台无关的驱动:

陀螺仪

若后续大家想移植到 Linux、Android ,也可以在这里可以找到工程:

https://github.com/STMicroelectronics/STMems_Standard_C_drivers
https://github.com/STMicroelectronics/st-mems-android-linux-drivers-input
https://github.com/STMicroelectronics/STMems_Linux_IIO_drivers
https://github.com/STMicroelectronics/STMems_Android_Sensor_HAL_IIO

lsm6dso-pid 参考代码:

https://github.com/STMicroelectronics/STMems_Standard_C_drivers/tree/master/lsm6dso_STdC

arduino、micropython 参考代码:

https://github.com/arduino-libraries/Arduino_LSM6DSOX
https://github.com/micropython-Chinese-Community/mpy-lib/tree/master/sensor/LSM6DSO

数据手册下载,其中包含有中文应用手册:

https://www.st.com/zh/mems-and-sensors/lsm6dso.html

陀螺仪

4、引脚说明

一共 14 个 PIN 脚,每个引脚的详细说明可以参考数据手册。 总的来说就是 I2C 和 SPI 无法同时使用,因为它们有共用 PIN 脚。

陀螺仪

5、硬件模式

一般用模式 1,模式 2、模式 3、模式 4 比较复杂,可以外接传感器,摄像头等。

陀螺仪

6、I2C 读写地址

LSM6DSO 从机地址是 110101x ,最后一位 x 和一个 PIN 的状态有关系。 如果 SDO/SA0 是高,从机地址是 1101011。 如果 SDO/SA0 是低,从机地址是 1101010。

这个方案可以使得一路 I2C bus 挂两个 lsm6dso,同时使用。

加上读写位,总结如下:

陀螺仪

传输示意图如下:

陀螺仪陀螺仪

7、寄存器

该器件有 60+ 个寄存器,主要的几个如下:

1、设备 ID

只读,出厂已经固化在硬件里面了,可以通过读写这个寄存器,判断设备是否存在,通讯是否正常,设备的 ID 是 0x6C。

陀螺仪

2、加速度控制寄存器

这个寄存器可以设置加速度的量程、输出速率等;

陀螺仪陀螺仪

3、陀螺仪控制寄存器

这个寄存器可以设置陀螺仪的量程、输出速率等;

陀螺仪陀螺仪

4、状态寄存器

通过读取这个寄存器可以判断,传感器是否有新的数据。

陀螺仪

5、温度传感器

2个寄存器,输出的是有符号数据。

陀螺仪

6、陀螺仪数据传感器

总共 6 个寄存器,分 x、y、z 三轴的高位和低位,这里要注意,输出的是有符号数据。

陀螺仪

陀螺仪

陀螺仪

7、加速度数据传感器

总共 6 个寄存器,分 x、y、z 三轴的高位和低位,这里要注意,输出的是有符号数据。

陀螺仪

陀螺仪

陀螺仪

8、代码

博主用的是轮询去读数据,大家也可以配置成中断方式。 另外,博主是直接去各个数据寄存器去读数据,大家也可以配置成去器件 FIFO 中读数据。 该器件有 3Kbyte 的 FIFO,若使用压缩算法,可以达到 9Kbyte。

初始化部分:

i2c_init();
LSM6DSO_Check();
  
u8 LSM6DSO_Check(void)
{
 u8 temp;
 temp=LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_WHO_AM_I);
 if(temp==0X6C)
  return 0; 
 else
   return 1; 
}

LSM6DSO_WriteOneByte(LSM6DSO_ADDRESS,LSM6DSO_CTRL1_XL,ODR_XL_104Hz|FS_XL_2g);
LSM6DSO_WriteOneByte(LSM6DSO_ADDRESS,LSM6DSO_CTRL2_G,ODR_G_104Hz|FS_G_250);

读数据

while(1)
{
  status=LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_STATUS_REG);
  
  if(status & TEM_DATA_AVAILABLE)
  {
   temp_raw=LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUT_TEMP_L)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUT_TEMP_H)<<8);
   temp_deg=temp_raw/TEMP_LSB_PER_DEG+TEMP_OFFSET_DEG;
   sprintf((char*)temperature,"temperature:%02f",temp_deg);
   LCD_ShowString(30,90,200,16,16,temperature);  
  }
  
  if(status & GYR_DATA_AVAILABLE)
  {
   gyr_x_raw = LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTX_L_G)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTX_H_G)<<8);
   gyr_y_raw = LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTY_L_G)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTY_H_G)<<8);
   gyr_z_raw = LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTZ_L_G)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTZ_H_G)<<8);

   gyr_x = gyr_x_raw*GYR_LSB_250_PER;
   gyr_y = gyr_y_raw*GYR_LSB_250_PER;
   gyr_z = gyr_z_raw*GYR_LSB_250_PER;
   
   printf("Gyro:X:%02f mdps,Y:%02f mdps,Z:%02f mdps \\r\\n",gyr_x,gyr_y,gyr_z);
  }
  
  if(status & ACC_DATA_AVAILABLE)
  {
   acc_x_raw=LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTX_L_A)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTX_H_A)<<8);
   acc_y_raw=LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTY_L_A)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTY_H_A)<<8);
   acc_z_raw=LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTZ_L_A)|(LSM6DSO_ReadOneByte(LSM6DSO_ADDRESS,LSM6DSO_OUTZ_H_A)<<8);

   acc_x=acc_x_raw*ACC_LSB_2G_PER;
   acc_y=acc_y_raw*ACC_LSB_2G_PER;
   acc_z=acc_z_raw*ACC_LSB_2G_PER;
   
   printf("Acc:X:%02f mg,Y:%02f mg,Z:%02f mg \\r\\n",acc_x,acc_y,acc_z);   
  }

寄存器定义

#define LSM6DSO_ADDRESS      0xD4

#define LSM6DSO_ID          0x6C

#define LSM6DSO_SDO_CRTL          0x02
#define LSM6DSO_FIFO_CTRL1        0x07  
#define LSM6DSO_FIFO_CTRL2        0x08
#define LSM6DSO_FIFO_CTRL3        0x09
#define LSM6DSO_FIFO_CTRL4        0x0A
#define LSM6DSO_COUNTER_BDR_REG1  0x0B
#define LSM6DSO_COUNTER_BDR_REG2  0x0C  
#define LSM6DSO_INT1_CTRL         0x0D
#define LSM6DSO_INT2_CTRL         0x0E
#define LSM6DSO_WHO_AM_I         0x0F
#define LSM6DSO_CTRL1_XL         0x10
  //bit[7:4]
typedef enum {
   ODR_XL_OFF                  = (0<<4),  
   ODR_XL_1Hz6_LOW_POWER_ONLY  = (11<<4),
   ODR_XL_12Hz5                = (1<<4),
   ODR_XL_26Hz                 = (2<<4),
   ODR_XL_52Hz                 = (3<<4),  
   ODR_XL_104Hz                = (4<<4),   
   ODR_XL_208Hz                = (5<<4),  
   ODR_XL_416Hz                = (6<<4),   
   ODR_XL_833Hz                = (7<<4), 
   ODR_XL_1k66Hz               = (8<<4), 
   ODR_XL_3k33Hz               = (9<<4), 
   ODR_XL_6k66Hz               = (10<<4),  
} lsm6dso_odr_xl_t;
  //bit[3:2]
typedef enum {
   FS_XL_2g                    = (0<<2),
   FS_XL_4g                    = (2<<2),
   FS_XL_8g                    = (3<<2),
   FS_XL_16g_SPIT_OIS_IU_FS    = (1<<2), /* check  XL_FS_MODE = ‘0’ in CTRL8_XL (17h) */
} lsm6dso_fs_xl_t;
#define ACC_LSB_2G_PER       0.061
#define ACC_LSB_4G_PER       0.122
#define ACC_LSB_8G_PER       0.244
#define ACC_LSB_16G_PER      0.488 

#define LSM6DSO_CTRL2_G     0x11
   //bit[7:4]
typedef enum {
   ODR_G_OFF                  = (0<<4),  
   ODR_G_12Hz5                = (1<<4),
   ODR_G_26Hz                 = (2<<4),
   ODR_G_52Hz                 = (3<<4),  
   ODR_G_104Hz                = (4<<4),   
   ODR_G_208Hz                = (5<<4),  
   ODR_G_416Hz                = (6<<4),   
   ODR_G_833Hz                = (7<<4), 
   ODR_G_1k66Hz               = (8<<4), 
   ODR_G_3k33Hz               = (9<<4), 
   ODR_G_6k66Hz               = (10<<4), 
   ODR_G_NOT_AVAILABLE        = (11<<4),
} lsm6dso_odr_g_t;
  //bit[3:2]
typedef enum {
   FS_G_250                   = (0<<2),
   FS_G_500                   = (1<<2),
   FS_G_1000                  = (2<<2),
   FS_G_2000                  = (3<<2),
} lsm6dso_fs_g_t;
    
#define GYR_LSB_250_PER        8.75
#define GYR_LSB_500_PER        17.50
#define GYR_LSB_1000_PER       35.0
#define GYR_LSB_2000_PER       70.0 
  
#define LSM6DSO_CTRL3_C         0x12
#define LSM6DSO_CTRL4_C         0x13
#define LSM6DSO_CTRL5_C        0x14
#define LSM6DSO_CTRL6_C        0x15
#define LSM6DSO_CTRL7_G          0x16
#define LSM6DSO_CTRL8_XL         0x17
#define LSM6DSO_CTRL9_XL         0x18
#define LSM6DSO_CTRL10_C         0x19
#define LSM6DSO_ALL_INT_SRC      0x1A
#define LSM6DSO_WAKE_UP_SRC      0x1B
#define LSM6DSO_TAP_SRC          0x1C
#define LSM6DSO_D6D_SRC          0x1D
#define LSM6DSO_STATUS_REG       0x1E
#define TEM_DATA_AVAILABLE   (1<<2)
#define GYR_DATA_AVAILABLE   (1<<1)
#define ACC_DATA_AVAILABLE   (1<<0)
  
#define LSM6DSO_OUT_TEMP_L       0x20
#define LSM6DSO_OUT_TEMP_H       0x21
#define TEMP_LSB_PER_DEG     256.0
#define TEMP_OFFSET_DEG      25

#define LSM6DSO_OUTX_L_G     0x22
#define LSM6DSO_OUTX_H_G     0x23
#define LSM6DSO_OUTY_L_G     0x24
#define LSM6DSO_OUTY_H_G     0x25
#define LSM6DSO_OUTZ_L_G     0x26
#define LSM6DSO_OUTZ_H_G     0x27

#define LSM6DSO_OUTX_L_A    0x28
#define LSM6DSO_OUTX_H_A     0x29
#define LSM6DSO_OUTY_L_A     0x2A
#define LSM6DSO_OUTY_H_A     0x2B
#define LSM6DSO_OUTZ_L_A     0x2C
#define LSM6DSO_OUTZ_H_A     0x2D
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分