单调栈解题模板如何秒杀三道算法题

电子说

1.3w人已加入

描述

单调栈实际上就是栈,只是利用了一些巧妙的逻辑,使得 每次新元素入栈后,栈内的元素都保持有序 (单调递增或单调递减)。

本文就通过几道算法题来看看单调栈模板的使用。

单调栈模板

首先,看一下 Next Greater Number 的原始问题,这是力扣第 496 题「下一个更大元素 I」:

给你一个数组,返回一个等长的数组,对应索引存储着下一个更大元素,如果没有更大的元素,就存 -1。

函数签名如下:

vector<int> nextGreaterElement(vector<int>& nums);

比如说,输入一个数组nums = [2,1,2,4,3],你返回数组[4,2,4,-1,-1]

解释:第一个 2 后面比 2 大的数是 4; 1 后面比 1 大的数是 2;第二个 2 后面比 2 大的数是 4; 4 后面没有比 4 大的数,填 -1;3 后面没有比 3 大的数,填 -1。

这道题的暴力解法很好想到,就是对每个元素后面都进行扫描,找到第一个更大的元素就行了。但是暴力解法的时间复杂度是O(n^2)

这个问题可以这样抽象思考:把数组的元素想象成并列站立的人,元素大小想象成人的身高。这些人面对你站成一列,如何求元素「2」的 Next Greater Number 呢?很简单,如果能够看到元素「2」,那么他后面可见的第一个人就是「2」的 Next Greater Number,因为比「2」小的元素身高不够,都被「2」挡住了,第一个露出来的就是答案。

数组

这个情景很好理解吧?带着这个抽象的情景,先来看下代码。

vector<int> nextGreaterElement(vector<int>& nums) {
    vector<int> res(nums.size()); // 存放答案的数组
    stack<int> s;
    // 倒着往栈里放
    for (int i = nums.size() - 1; i >= 0; i--) {
        // 判定个子高矮
        while (!s.empty() && s.top() <= nums[i]) {
            // 矮个起开,反正也被挡着了。。。
            s.pop();
        }
        // nums[i] 身后的 next great number
        res[i] = s.empty() ? -1 : s.top();
        // 
        s.push(nums[i]);
    }
    return res;
}

这就是单调队列解决问题的模板。for 循环要从后往前扫描元素,因为我们借助的是栈的结构,倒着入栈,其实是正着出栈。while 循环是把两个「个子高」元素之间的元素排除,因为他们的存在没有意义,前面挡着个「更高」的元素,所以他们不可能被作为后续进来的元素的 Next Great Number 了。

这个算法的时间复杂度不是那么直观,如果你看到 for 循环嵌套 while 循环,可能认为这个算法的复杂度也是O(n^2),但是实际上这个算法的复杂度只有O(n)

分析它的时间复杂度,要从整体来看:总共有n个元素,每个元素都被push入栈了一次,而最多会被pop一次,没有任何冗余操作。所以总的计算规模是和元素规模n成正比的,也就是O(n)的复杂度。

问题变形

单调栈的使用技巧差不多了,来一个简单的变形,力扣第 1118 题「一月有多少天」:

给你一个数组T,这个数组存放的是近几天的天气气温,你返回一个等长的数组,计算: 对于每一天,你还要至少等多少天才能等到一个更暖和的气温;如果等不到那一天,填 0

函数签名如下:

vector<int> dailyTemperatures(vector<int>& T);

比如说给你输入T = [73,74,75,71,69,76],你返回[1,1,3,2,1,0]

解释:第一天 73 华氏度,第二天 74 华氏度,比 73 大,所以对于第一天,只要等一天就能等到一个更暖和的气温,后面的同理。

这个问题本质上也是找 Next Greater Number,只不过现在不是问你 Next Greater Number 是多少,而是问你当前距离 Next Greater Number 的距离而已。

相同的思路,直接调用单调栈的算法模板,稍作改动就可以,直接上代码吧:

vector<int> dailyTemperatures(vector<int>& T) {
    vector<int> res(T.size());
    // 这里放元素索引,而不是元素
    stack<int> s; 
    /* 单调栈模板 */
    for (int i = T.size() - 1; i >= 0; i--) {
        while (!s.empty() && T[s.top()] <= T[i]) {
            s.pop();
        }
        // 得到索引间距
        res[i] = s.empty() ? 0 : (s.top() - i); 
        // 将索引入栈,而不是元素
        s.push(i); 
    }
    return res;
}

单调栈讲解完毕,下面开始另一个重点:如何处理「循环数组」。

如何处理环形数组

同样是 Next Greater Number,现在假设给你的数组是个环形的,如何处理?力扣第 503 题「下一个更大元素 II」就是这个问题:

比如输入一个数组[2,1,2,4,3],你返回数组[4,2,4,-1,4]。拥有了环形属性, 最后一个元素 3 绕了一圈后找到了比自己大的元素 4

一般是通过 % 运算符求模(余数),来获得环形特效:

int[] arr = {1,2,3,4,5};
int n = arr.length, index = 0;
while (true) {
    print(arr[index % n]);
    index++;
}

这个问题肯定还是要用单调栈的解题模板,但难点在于,比如输入是[2,1,2,4,3],对于最后一个元素 3,如何找到元素 4 作为 Next Greater Number。

对于这种需求,常用套路就是将数组长度翻倍

数组

这样,元素 3 就可以找到元素 4 作为 Next Greater Number 了,而且其他的元素都可以被正确地计算。

有了思路,最简单的实现方式当然可以把这个双倍长度的数组构造出来,然后套用算法模板。但是, 我们可以不用构造新数组,而是利用循环数组的技巧来模拟数组长度翻倍的效果

直接看代码吧:

vector<int> nextGreaterElements(vector<int>& nums) {
    int n = nums.size();
    vector<int> res(n);
    stack<int> s;
    // 假装这个数组长度翻倍了
    for (int i = 2 * n - 1; i >= 0; i--) {
        // 索引要求模,其他的和模板一样
        while (!s.empty() && s.top() <= nums[i % n])
            s.pop();
        res[i % n] = s.empty() ? -1 : s.top();
        s.push(nums[i % n]);
    }
    return res;
}

这样,就可以巧妙解决环形数组的问题,时间复杂度O(N)

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分