通信网络是智能时代的基础,通过AI模型优化,帮助解决应用碎片化问题。过去10年,AI算法的算力需求提升了40万倍。
在AI能力快速提升的情况下,我认为需要考虑AI的目标如何与人类一致、并且正确和高效地执行。除了通过规则和法律来加强AI的伦理和治理外,从理论和技术的角度看,要达到这些要求,目前还面临三个重要的挑战:AI的目标定义、正确性与适应性、以及效率。”
AI面临的第一个挑战,是缺乏共识的目标定义。杜克大学的物理学家Adrian Bejan教授在《生命的物理学》书中,列出了对智能的二十多种目标定义,有的强调理解和认知能力、有的强调学习和思考能力、有的强调适应和行动能力等等。如果没有定义清楚并达成共识,就很难确保AI发展的目标与人类一致,也很难合理地分类和科学地计算。
第二大挑战,在当前的很多AI应用中,存在正确性和适应性的挑战。依靠大数据统计规律进行的学习,会依赖于采样的覆盖面和数据的正确性,如果错误使用,就可能导致结果不稳定和偏见的风险,出现“黑天鹅”事件。第三大挑战AI的效率。
面对三大挑战,如何突破?周红博士认为,从实用的角度发展知识和智能。首先,如何通过从外部环境和我们自身的事实和现象中,归纳抽象出概念和属性、及其关系和运行规律,来形成知识。其次,是发展更好的计算模式,以及与之匹配的计算架构与计算部件,来持续提升智能计算的效率。
他建议,在思考的基础上,发展感知与建模、知识自动生成、求解与行动三个核心部分,通过从多模态感知融合与建模,到“知识+数据”驱动的决策,实现更高正确性与适应性的自主智能系统。
华为在计算领域做了一些有益的探索。华为在视觉、语言文字、图网络、多模态等专用L0基础大模型之上,形成L1行业专用大模型,来降低开发门槛、提升泛化能力,解决应用碎片化的问题,推动从“作坊式”走向工业化升级,帮助电力、煤矿、交通、制造等重要行业,提升作业效率、提升安全性。
又比如,在煤矿场景,华为帮助客户通过模型训练与推理,来实现瓦斯浓度的超前预警、作业序列的风险防范、以及作业质量的智能验收;华为的智慧港口方案,已经在天津、青岛、上海、深圳等港口实现智慧化应用。华为机场与轨道军团在呼和浩特、武汉、西安、深圳、香港等地与客户及合作伙伴们一起探索城轨、铁路与机场的数字化转型,不仅提升作业安全性与效率,还提升用户体验与满意度。比如在深圳机场,通过基于云和大数据以及AI创新,实现了智能机位分配,每年可以节省260万旅客免坐摆渡车,成为全球数字化转型的标杆。
“在通信和计算两大基石的驱动下,从狭义人工智能,到通用人工智能与超级人工智能的过程中,我们首先要通过理论和技术的不断突破,来实现万物智联,促进社会的进步;其次要勇于拓展思想的边界,增强对智能的认知和掌控能力;最终,用正确的目标和有力的手段,牵引人工智能的发展,助力我们超越极限,增强生命,创造物质,控制能量,跨越时空,实现人类文明的进化。”周红表示。
我们将这些面向未来的思考放在黄大年茶思屋网站上,促进开放的探讨交流,希望能与伙伴们一起,开展相关的基础科学研究与技术创新,重构基础理论、重构架构、重构软件。同时我们也赞助青年学者,并在ICPC、IMC、以及其他全球学生奥林匹克竞赛中,分享这些挑战和方向、赞助学生训练营、激励和培养更多的未来领军人才。
本文由电子发烧友原创,转载请注明以上来源。微信号zy1052625525。需入群交流,请添加微信elecfans999,投稿爆料采访需求,请发邮箱zhangying@elecfans.com。
全部0条评论
快来发表一下你的评论吧 !