四款自耦降压启动控制电路图

描述

  自耦降压启动控制电路图一:

 

变压器

 

  上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。

  控制过程:

  1、合上空气开关QF接通三相电源。

  2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

  3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。

  4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。

  5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。

  6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。

  7、电动机的过载保护由热继电器FR完成。

  自耦降压启动控制电路图二:

  定子串自耦变压器降压启动控制线路:串自耦变压器降压启动的控制线路如图所示。这一线路的设计思想和串电阻启动线路基本相同,也是采用时间继电器完成按时动作,所不同是启动时串入自耦变压器,启动结束时自动切除。

 

变压器

 

  串联自耦变压器启动和串电阻启动相比,其优点是在同样的启动转矩时,对电网的电流冲击小,功率损耗小。

  缺点是自耦变压器相对电阻结构复杂,价格较高。这种线路主要用于启动较大容量的电动机,以减小启动电流对电网的影响。

  自耦降压启动控制电路图三:

  如图所示为QJ3型手动控制补偿器降压启动的控制电路图。其工作原理如下:

 

变压器

 

  当手柄扳到“停止”位置时,装在主轴上的动触头与两排静触头都不接触,电动机处于断电停止状态;当手柄向前推到“启动”位置时,动触头与上面的一排启动触头接触,三相电源Ll、L2、L3通过右边三个动、静触头,接入自耦变压器,又经自耦变压器的三个65%(或80%)抽头接入电动机进行降压启动;左边两个动、静图触头接触则把自耦变压器接成了星形。

  当电动机的转速上升到一定值时,手柄向后迅速扳到“运行”位置,使右边三个动触头与下面一排的三个运行静触头接触,这时,自耦变压器脱离,电动机与=相电源L1、L2、L3直接相接全压运行。停止时,只要按下停止按钮SB,欠压脱扣器KV线圈失电,衔铁下落释放,通过机械操作机构使补偿器掉闸,手柄便回到“停止”位置,电动机断电停转。

  从上右图中我们可以看出,热继电器FR的动断触头,欠压脱扣器线圈KV、停止按钮SB,串接在两相电源上,所以当出现电源电压不足、突然停电、电动机过载和停车时,都能使补偿器掉闸,电动机断电停转。

  自耦降压启动控制电路图四:

  如图所示为按钮、接触器控制补偿器的三相电动机降压启动的控制线路图。线路的工作原理如下:先合上电源开关QS:

 

变压器

 

  降压启动:按下按钮SB1→SB1动断触头先分断对KM2互锁、SB1动合触头后闭合→KM1线圈通电→KM1互锁触头分断对KM2互锁、KM1自锁触头闭合自锁、KM1主触头闭合→电动机M接入TM降压启动。

  全压运行:当电动机转速上升到一定值时,按下SB2→SB2动合触头后闭合、SB2动断触头先分断→KM1线圈通电→KM1自锁触头分断接触自锁、KM1互锁触头闭合、KM1主触头分断,TM切除→KM2线圈通电→KM2自锁触头自锁、KM2主触头闭合、KM2互锁触头分断对KM1互锁、KM2动断触头分断,解除TM的星形连接→电动机M全压运行。停止是,按下SB3即可。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分