电机控制的原理

人工智能

629人已加入

描述

  电机控制原理

  无刷电机属于自换流型(自我方向转换),因此控制起来更加复杂。

  BLDC电机控制要求了解电机进行整流转向的转子位置和机制。对于闭环速度控制,有两个附加要求,即对于转子速度/或电机电流以及PWM信号进行测量,以控制电机速度功率。

  BLDC电机可以根据应用要求采用边排列或中心排列PWM信号。大多数应用仅要求速度变化操作,将采用6个独立的边排列PWM信号。这就提供了最高的分辨率。如果应用要求服务器定位、能耗制动或动力倒转,推荐使用补充的中心排列PWM信号。

  为了感应转子位置,BLDC电机采用霍尔效应传感器来提供绝对定位感应。这就导致了更多线的使用和更高的成本。无传感器BLDC控制省去了对于霍尔传感器的需要,而是采用电机的反电动势(电动势)来预测转子位置。无传感器控制对于像风扇和泵这样的低成本变速应用至关重要。在采有BLDC电机时,冰箱和空调压缩机也需要无传感器控制。

  空载时间的插入和补充

  大多数BLDC电机不需要互补的PWM、空载时间插入或空载时间补偿。可能会要求这些特性的BLDC应用仅为高性能BLDC伺服电动机、正弦波激励式BLDC电机、无刷AC、或PC同步电机。

  控制算法

  许多不同的控制算法都被用以提供对于BLDC电机的控制。典型地,将功率晶体管用作线性稳压器来控制电机电压。当驱动高功率电机时,这种方法并不实用。高功率电机必须采用PWM控制,并要求一个微控制器来提供起动和控制功能。

  运动控制原理

  运动控制与机器人密切相关。工业应用中的机器人必须透过由多款电机所构成的致动器才能自行移动,以执行任务或透过机器手臂抓取工具。

  机器人的运动控制系统通常由电机控制器、电机驱动、电机本体(多为伺服电机)组成。电机控制器具备智能运算功能,并可传送指令以驱动电机。驱动可提供增压电流,根据控制器指令以驱动电机。电机可以直接移动机器人,也可通过传动系统或链条系统让机器人移动。

  图1:机器人的运动控制系统。

  输出类型

  移动机器人往往用于探索大范围面积的土地,并能够使用各种螺旋桨、机器脚、轮子、轨道或机器臂移动。例如各种NI展示平台,包括VINI、VolksBot与Isadora。这些机器人分别使用了全向轮(Mecanum wheel)、一般轮以及机器手臂。而针对嵌入式控制,则可通过NI CompactRIO等嵌入式平台,并整合实时控制器与FPGA。CompactRIO亦包含可重配置机箱,能够容纳多样化的I/O配置,包含传感器输入与电机控制。

  VINI是使用全向轮的机器人平台,能以多方向行进。除了像传统轮子般的前进与后退,全向轮亦可将轮轴旋转为相反方向,以任何方向行进。此款车轮已普遍用于必须能在狭小空间中移动的自动堆高机等应用。

  VINI还是一款地图描绘机器人,通过NI工业级控制器与CompactRIO执行路径规划与数据处理作业。嵌入式的工业级控制器提供雷射扫描地图,并执行机器视觉处理,让CompactRIO接收传感器数据,并在摄像机系统上控制伺服电机。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分