2023年一月份跟二月份创建了一个PyQT5人工智能软件开发系列的文章系列,过去的两个月都没怎么更新,心里一直想有时间继续更新下去,今天又更新了一篇,基于PyQT5实现多线程、界面化、YOLOv8对象检测、实例分割、姿态评估的推理。
基本设计思路
这个系列我好久没有更新了,今天更新一篇PyQT5中如何实现YOLOv8 + ONNRUNTIME推理界面化与多线程支持。首先需要实现三个类分别完成YOLOv8的对象检测、实例分割、姿态评估模型推理。然后在实现界面类,构建如图:
推理类型通过单选按钮实现选择,支持对象检测、实例分割、姿态评估。参数设置选择模型文件与标签文件地址作为输入,同时选择置信度,置信度之在0~1之间。 推理按钮开发推理演示,支持视频与图像文件,开始推理会单独开启一个推理线程实现推理,推理结果通过信号发送到指定的槽函数处理之后更新界面,通过信号与槽机制实现界面线程跟推理线程相互独立与数据共享。
界面代码实现
界面部分通过一个QWidget实现一个面板,通过垂直与水平布局实现界面组件的布局管理,相关的代码实现如下:
class YOLOv8InferPanel(QtWidgets.QWidget): def __init__(self, parent=None): super().__init__(parent) # 文本标签 self.rbtn0 = QtWidgets.QRadioButton("对象检测") self.rbtn1 = QtWidgets.QRadioButton("实例分割") self.rbtn3 = QtWidgets.QRadioButton("姿态评估") self.rbtn0.setChecked(True) hbox_layout1 = QtWidgets.QHBoxLayout() hbox_layout1.addWidget(self.rbtn0) hbox_layout1.addWidget(self.rbtn1) hbox_layout1.addWidget(self.rbtn3) panel3 = QtWidgets.QGroupBox("推理类型") panel3.setLayout(hbox_layout1) # 输入文本框 self.image_file_edit = QtWidgets.QLineEdit() self.image_file_edit.setMinimumWidth(100) self.image_file_edit.setEnabled(False) fileBtn = QtWidgets.QPushButton("图像文件") self.weight_file_path = QtWidgets.QLineEdit() self.weight_file_path.setMinimumWidth(100) self.weight_file_path.setEnabled(False) modelBtn = QtWidgets.QPushButton("模型文件") self.label_file_path = QtWidgets.QLineEdit() self.label_file_path.setMinimumWidth(100) self.label_file_path.setEnabled(False) labelBtn = QtWidgets.QPushButton("标签文件") self.conf_spinbox = QtWidgets.QDoubleSpinBox() self.conf_spinbox.setRange(0, 1) self.conf_spinbox.setSingleStep(0.01) self.conf_spinbox.setValue(0.25) grid_layout2 = QtWidgets.QGridLayout() grid_layout2.addWidget(fileBtn, 0, 0) grid_layout2.addWidget(self.image_file_edit, 0, 1) grid_layout2.addWidget(modelBtn, 0, 2) grid_layout2.addWidget(self.weight_file_path, 0, 3) grid_layout2.addWidget(labelBtn, 1, 0) grid_layout2.addWidget(self.label_file_path, 1, 1) grid_layout2.addWidget(QtWidgets.QLabel("置信:"), 1, 2) grid_layout2.addWidget(self.conf_spinbox, 1, 3) panel2 = QtWidgets.QGroupBox("参数设置") panel2.setLayout(grid_layout2) # 输入文本框 self.label = QtWidgets.QLabel() self.label.setMinimumSize(1280, 720) pixmap = QtGui.QPixmap("images/wp.jpg") pix = pixmap.scaled(QtCore.QSize(1280, 720), QtCore.Qt.KeepAspectRatio) self.label.setPixmap(pix) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setStyleSheet("background-color:black; color: green") self.startBtn = QtWidgets.QPushButton("开始推理") self.stopBtn = QtWidgets.QPushButton("停止") self.startBtn.setStyleSheet("background-color:cyan; color: black") self.stopBtn.setStyleSheet("background-color:gray; color: white") self.stopBtn.setEnabled(False) hbox_layout = QtWidgets.QHBoxLayout() hbox_layout.addStretch(1) hbox_layout.addWidget(self.startBtn) hbox_layout.addWidget(self.stopBtn) panel1 = QtWidgets.QWidget() panel1.setLayout(hbox_layout) # 添加到布局管理器中 vbox_layout = QtWidgets.QVBoxLayout() vbox_layout.addWidget(panel3) vbox_layout.addWidget(panel2) vbox_layout.addWidget(panel1) vbox_layout.addWidget(self.label) vbox_layout.addStretch(1) # 面板容器 self.setLayout(vbox_layout) # setup listener modelBtn.clicked.connect(self.on_weight_select) fileBtn.clicked.connect(self.on_update_image) labelBtn.clicked.connect(self.on_label_select) self.startBtn.clicked.connect(self.on_yolov8_infer) self.work_thread = None
推理线程
基于QThread继承实现run方法,完成推理线程构建,根据传入的参数不同,初始化不同的推理类型(对象检测、实例分割、姿态评估),推理线程实现代码如下:
class InferenceThread(QtCore.QThread): fire_stats_signal = QtCore.pyqtSignal(dict) def __init__(self, settings): super(InferenceThread, self).__init__() self.settings = settings self.detector = None if self.settings.model_type == 0: self.detector = YOLOv8ORTDetector(settings) if self.settings.model_type == 1: self.detector = YOLOv8ORTSegment(settings) if self.settings.model_type == 2: self.detector = YOLOv8ORTPose(settings) self.input_image = settings.input_image def run(self): if self.detector is None: return if self.input_image.endswith(".mp4"): cap = cv.VideoCapture(self.input_image) while True: ret, frame = cap.read() if ret is True: self.detector.infer_image(frame) self.fire_stats_signal.emit({"result": frame}) else: break else: frame = cv.imread(self.input_image) self.detector.infer_image(frame) self.fire_stats_signal.emit({"result": frame}) self.fire_stats_signal.emit({"done": "done"}) return
应用程序演示
最终调用应用程序代码,实现启动与运行的界面如下:
# 初始化APP实例 import platform app = QtWidgets.QApplication(sys.argv) if 'Windows' == platform.system(): app.setStyle('Windows') # 初始化桌面容器 main_win = QtWidgets.QMainWindow() # 设置APP窗口名称 main_win.setWindowTitle("YOLOv8多线程推理应用演示-2号高手") # 初始化内容面板 content_panel = YOLOv8InferPanel() # 设置窗口大小 main_win.setMinimumSize(1340, 960) main_win.setCentralWidget(content_panel) # 请求显示 main_win.show() # 加载窗口并启动App app.exec()
全部0条评论
快来发表一下你的评论吧 !