Server的通讯量与GPU数量呈线性关系

电子说

1.3w人已加入

描述

在数据并行上篇中,我们介绍了朴素数据并行(DP)与分布式数据并行(DDP)。两者的总通讯量虽然相同,但DP存在负载不均的情况,大部分的通讯压力集中在Server上,而Server的通讯量与GPU数量呈线性关系,导致DP一般适用于单机多卡场景。而DDP通过采用Ring-AllReduce这一NCCL操作,使得通讯量均衡分布到每块GPU上,且该通讯量为一固定常量,不受GPU个数影响,因此可实现跨机器的训练。

在上篇介绍中,通讯负载不均的优化我们解释过了,但还遗留了一个显存开销问题:数据并行中,每个GPU上都复制了一份完整模型,当模型变大时,很容易打爆GPU的显存,那要怎么办呢?

今天这篇文章,我们将介绍由微软开发的ZeRO(零冗余优化),它是DeepSpeed这一分布式训练框架的核心,被用来解决大模型训练中的显存开销问题。ZeRO的思想就是用通讯换显存。如果初读ZeRO,觉得它逻辑跳跃,晦涩难懂,那么这篇文章或许可以帮到你~全文结构如下:

一、存储消耗

1.1 存储分类

1.2 混合精度训练

1.3 存储大小

二、ZeRO-DP(),ZeRO与模型并行
三、ZeRO-R
四、ZeRO-offload与ZeRO-Infinity
五、参考

推荐阅读:

图解大模型训练之:流水线并行,以GPipe为例

图解大模型训练之:数据并行上篇(DP, DDP)

一、存储消耗

1.1 存储分类

首先,我们来看在大模型训练的过程中,GPU都需要存什么内容。

gpu

存储主要分为两大块:Model StatesResidual StatesModel States指和模型本身息息相关的,必须存储的内容,具体包括:

optimizer states:Adam优化算法中的momentum和variance

gradients:模型梯度

parameters:模型参数W

Residual States指并非模型必须的,但在训练过程中会额外产生的内容,具体包括:

activation:激活值。在流水线并行中我们曾详细介绍过。在backward过程中使用链式法则计算梯度时会用到。有了它算梯度会更快,但它不是必须存储的,因为可以通过重新做Forward来算它。

temporary buffers: 临时存储。例如把梯度发送到某块GPU上做加总聚合时产生的存储。

unusable fragment memory:碎片化的存储空间。虽然总存储空间是够的,但是如果取不到连续的存储空间,相关的请求也会被fail掉。对这类空间浪费可以通过内存整理来解决。

1.2 精度混合训练

知道了存储分类,进一步,我们想知道,假设模型的参数W大小是,那么每一类存储具体占了多大的空间呢?

在分析这个问题前,我们需要来了解精度混合训练

对于模型,我们肯定希望其参数越精准越好,也即我们用fp32(单精度浮点数,存储占4byte)来表示参数W。但是在forward和backward的过程中,fp32的计算开销也是庞大的。那么能否在计算的过程中,引入fp16或bf16(半精度浮点数,存储占2byte),来减轻计算压力呢?于是,混合精度训练就产生了,它的步骤如下图:

gpu

存储一份fp32的parameter,momentum和variance(统称model states)

在forward开始之前,额外开辟一块存储空间,将fp32 parameter减半到fp16 parameter。

正常做forward和backward,在此之间产生的activation和gradients,都用fp16进行存储。

用fp16 gradients去更新fp32下的model states。

当模型收敛后,fp32的parameter就是最终的参数输出。

通过这种方式,混合精度训练在计算开销和模型精度上做了权衡。如果不了解fp32,fp16和bf16的细节也没关系,不影响下文的阅读。只要记住它们所占的存储空间和精度表达上的差异即可。

1.3 存储大小

现在,我们可以来计算模型在训练时需要的存储大小了,假设模型的参数W大小是,以byte为单位,存储如下:

gpu

因为采用了Adam优化,所以才会出现momentum和variance,当然你也可以选择别的优化办法。因此这里为了更通用些,记模型必存的数据大小为。因此最终内存开销为:

另外,这里暂不将activation纳入统计范围,原因是:

activation不仅与模型参数相关,还与batch size相关

activation的存储不是必须的。存储activation只是为了在用链式法则做backward的过程中,计算梯度更快一些。但你永远可以通过只保留最初的输入X,重新做forward来得到每一层的activation(虽然实际中并不会这么极端)。

因为activation的这种灵活性,纳入它后不方便衡量系统性能随模型增大的真实变动情况。因此在这里不考虑它,在后面会单开一块说明对activation的优化。

二、ZeRO-DP

知道了什么东西会占存储,以及它们占了多大的存储之后,我们就可以来谈如何优化存储了。

注意到,在整个训练中,有很多states并不会每时每刻都用到,举例来说;

Adam优化下的optimizer states只在最终做update时才用到

数据并行中,gradients只在最后做AllReduce和updates时才用到

参数W只在做forward和backward的那一刻才用到

诸如此类

所以,ZeRO想了一个简单粗暴的办法:如果数据算完即废,等需要的时候,我再想办法从个什么地方拿回来,那不就省了一笔存储空间吗?

沿着这个思路,我们逐一来看ZeRO是如何递进做存储优化的。

2.1 : Optimizer State Partitioning

首先,从 optimizer state开始优化。将optimizer state分成若干份,每块GPU上各自维护一份。这样就减少了相当一部分的显存开销。如下图:

gpu

复习一下,此时W=fp16,G=fp16,O=fp32。此时,整体数据并行的流程如下:

(1)每块GPU上存一份完整的参数W。将一个batch的数据分成3份,每块GPU各吃一份,做完一轮foward和backward后,各得一份梯度。

(2)对梯度做一次AllReduce,得到完整的梯度G,产生单卡通讯量。为了表达简明,这里通讯量我们就不再换算成byte了,而直接根据参数量来计算。对AllReduce(reduce-scatter + all-gather)不熟悉的朋友,可以先去看上一篇文章。

(3)得到完整梯度G,就可以对W做更新。我们知道W的更新由optimizer states和梯度共同决定。由于每块GPU上只保管部分optimizer states,因此只能将相应的W(蓝色部分)进行更新。(2)和(3)可以用下图表示:

gpu

(4)此时,每块GPU上都有部分W没有完成更新(图中白色部分)。所以我们需要对W做一次All-Gather,从别的GPU上把更新好的部分W取回来。产生单卡通讯量。

做完后,设GPU个数为,显存和通讯量的情况如下:

gpu

假设各变量大小如表格第二列所示,那么在增加1.5倍单卡通讯开销的基础上,将单卡存储降低了4倍。看起来是个还不错的trade-off,那么还能做得更好吗?

2.2  

现在,更近一步,我们把梯度也拆开,每个GPU格子维护一块梯度。

gpu

此时,数据并行的整体流程如下:

(1)每块GPU上存一份完整的参数W。将一个batch的数据分成3份,每块GPU各吃一份,做完一轮foward和backward后,算得一份完整的梯度(下图中绿色+白色)

(2)对梯度做一次Reduce-Scatter,保证每个GPU上所维持的那块梯度是聚合梯度。例如对GPU1,它负责维护G1,因此其他的GPU只需要把G1对应位置的梯度发给GPU1做加总就可。汇总完毕后,白色块对GPU无用,可以从显存中移除。单卡通讯量(1)和(2)见下图:

gpu

(3)每块GPU用自己对应的O和G去更新相应的W。更新完毕后,每块GPU维持了一块更新完毕的W。同理,对W做一次All-Gather,将别的GPU算好的W同步到自己这来。单卡通讯量。

再次比对下显存和通讯量:

gpu

和朴素DP相比,存储降了8倍,单卡通讯量持平,好像更牛皮了呢!那么,还可以优化吗?

2.3  

看到这里,也许你有点感觉了,ZeRO的思想就是:万物皆可切,万物皆可抛。所以现在,我们把参数也切开。每块GPU置维持对应的optimizer states,gradients和parameters(即W)。

gpu

数据并行的流程如下:

(1)每块GPU上存一份完整的参数W。将一个batch的数据分成3份,每块GPU各吃一份。

(2)做forward时,对W做一次All-Gather,取回分布在别的GPU上的W,得到一份完整的W,单卡通讯量。forward做完,立刻把不是自己维护的W抛弃。

(3)做backward时,对W做一次All-Gather,取回完整的W,单卡通讯量。backward做完,立刻把不是自己维护的W抛弃。

(4)做完backward,算得一份完整的梯度G,对G做一次Reduce-Scatter,从别的GPU上聚合自己维护的那部分梯度,单卡通讯量。聚合操作结束后,立刻把不是自己维护的G抛弃

(5)用自己维护的O和G,更新W。由于只维护部分W,因此无需再对W做任何AllReduce操作。

显存和通讯量如下:

gpu

到这一步,我们用1.5倍的通讯开销,换回近120倍的显存。只要梯度计算和异步更新做的好,通讯时间大部分可以被计算时间隐藏,因此这样的额外通讯开销,也是划算的。

到这里,我们可以放出原始论文中的说明图了,经过以上分析,这张说明图是不是瞬间就能看懂了。不得不吐槽下,虽然ZeRO的设计不复杂,但对应论文写得真是逻辑跳跃,晦涩难懂...

gpu

仔细一想,ZeRO其实掌握了降本增效的精髓:用完即弃,需要再补。反正我补一个和你差不多的,也不会花费很多通(找)讯(人)时间,还大大降低了我的成本。模型的每一层多算(造)几(轮)遍(子)有啥关系呢,反正在我的预算里每个人都一刻不停地干活,就行啦!

2.4 ZeRO VS 模型并行

知道模型并行的朋友,可能会想,既然ZeRO都把参数W给切了,那它应该是个模型并行呀?为什么要归到数据并行里呢?

其实ZeRO是模型并行的形式,数据并行的实质

模型并行,是指在forward和backward的过程中,我只需要用自己维护的那块W来计算就行。即同样的输入X,每块GPU上各算模型的一部分,最后通过某些方式聚合结果

但对ZeRO来说,它做forward和backward的时候,是需要把各GPU上维护的W聚合起来的,即本质上还是用完整的W进行计算。它是不同的输入X,完整的参数W,最终再做聚合

因为下一篇要写模型并行Megatron-LM,因此现在这里罗列一下两者的对比。

三、ZeRO-R

说完了以上对model states的显存优化,现在来看对residual states的优化。

3.1 : Partitioned Activation Checkpointing

前面说过,对activation的存储是灵活的。不像optimizer states,gradients和parameters对模型更新是必须的,activation只是起到加速梯度计算的作用。因此,在哪几层保存activation,保存哪些activation都是可以灵活设置的。同样,我们也可以仿照以上切割方式,每块GPU上只维护部分的activation,需要时再从别的地方聚合过来就行。需要注意的是,activation对显存的占用一般会远高于模型本身,通讯量也是巨大的,所以这块要灵活、有效地实验设计。

3.2 : Constant Size Buffer

固定大小的内存buffer,它的目的在于:

提升带宽利用率。当GPU数量上升,GPU间的通讯次数也上升,每次的通讯量可能下降(但总通讯量不会变)。数据切片小了,就不能很好利用带宽了。所以这个buffer起到了积攒数据的作用:等数据积攒到一定大小,再进行通讯。

使得存储大小可控。在每次通讯前,积攒的存储大小是常量,是已知可控的。更方便使用者对训练中的存储消耗和通讯时间进行预估。

3.3 : Memory Defragmentation

在前文提过,设置机制,对碎片化的存储空间进行重新整合,整出连续的存储空间。防止出现总存储足够,但连续存储不够而引起的存储请求fail。

四、ZeRO-Offload与ZeRO-Infinity

最后,简单介绍一下ZeRO-Offload。它的核心思想是:显存不够,内存来凑。如果我把要存储的大头卸载(offload)到GPU上,而把计算部分放到GPU上,这样比起跨机,是不是能既降显存,也能减少一些通讯压力呢?

ZeRO-Offload的做法是:

forward和backward计算量高,因此和它们相关的部分,例如参数W(fp16),activation,就全放入GPU。

update的部分计算量低,因此和它相关的部分,全部放入CPU中。例如W(fp32),optimizer states(fp32)和gradients(fp16)等。

具体切分如下图:

gpu

ZeRO-infinity也是同理,它们在解决的事情都是:找个除GPU之外的地方,存数据。感兴趣的朋友可以深入研究,这里就不展开了。

  
      审核编辑:彭静
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分