存储技术
FIFO(First In First Out)是异步数据传输时经常使用的存储器。该存储器的特点是数据先进先出(后进后出)。其实,多位宽数据的异步传输问题,无论是从快时钟到慢时钟域,还是从慢时钟到快时钟域,都可以使用 FIFO 处理。
FIFO 原理
◆工作流程
(1) 复位之后,在写时钟和非满状态信号的控制下,数据可以写入 FIFO 中。RAM 的写地址从 0 开始,每写一次数据写地址指针加一,指向下一个存储单元。当 FIFO 写满后,数据将不能再写入,否则数据会因覆盖而丢失。
(2) FIFO 数据为非空、或满状态时,在读时钟和非空状态信号的控制下,数据可以从 FIFO 中读出。RAM 的读地址从 0 开始,每读一次数据读地址指针加一,即指向下一个存储单元。当 FIFO 读空后,就不能再读数据,否则读出的数据将是错误的。
(3) FIFO 的存储结构为双口 RAM,允许读写同时进行。FIFO 的读写指针是循环计数的,即 读写指针对应的 RAM 地址超过 FIFO 深度时,会溢出归零,重新计数。
典型异步 FIFO 结构图如下所示。相关信号及空满状态的原理将在下面一一说明。
◆读写时刻
(1) 关于写时刻,只要 FIFO 中数据为非满状态,就可以进行写操作;如果 FIFO 为满状态,则禁止再写数据。
(2) 关于读时刻,只要 FIFO 中数据为非空状态,就可以进行读操作;如果 FIFO 为空状态,则禁止再读数据。
(3) 总之,如果一段时间内不间断的对 FIFO 同时进行读写操作,则要求写 FIFO 速率不能大于读 FIFO 速率。
◆读空状态
(1) 复位时,FIFO 中没有数据,空状态信号拉高。当 FIFO 被写入数据后,空状态信号拉低,表示非空状态。当读数据地址追赶上写地址,即读写地址都相等时,FIFO 为空状态。
(2) 因为 FIFO 是异步的,所以读写地址进行比较时,需要同步打拍逻辑,就需要耗费一定的时间。因此,空状态的指示信号不是实时的,会有一定的延时。如果在这段延迟时间内又有新的数据写入 FIFO,就会出现空状态指示信号有效,但实际上 FIFO 中存在数据的现象。
(3) 严格来讲该空状态指示是错误的。但是产生空状态的意义在于防止读操作对空状态的 FIFO 进行数据读取。产生空状态信号时,实际 FIFO 中有数据,相当于提前判断了空状态信号,此时不再进行读 FIFO 操作也是安全的。所以,该设计从应用上来说是没有问题的。
(4) 牢记,读空状态信号,是在读时钟域产生的。
◆写满状态
(1) 复位时,FIFO 中没有数据,满信号是拉低的,表示 FIFO 中的数据没有写满 (其实 FIFO 是空的 )。当 FIFO 开始写数据且读操作不进行或读速率相对较慢时,只要写数据地址超过读数据地址的 FIFO 深度时,便会产生满状态信号。此时写地址和读地址也是相等的,但是意义是不一样的。
(2) 此时经常使用多余的 1bit 分别当做读写地址的拓展位,来区分读写地址相同的时候,FIFO 的状态是空还是满状态。当读写地址与拓展位均相同的时候,表明读写数据的数量是一致的,则此时 FIFO 是空状态。如果读写地址相同,拓展位相反,表明写数据的数量已经超过读数据数量的一个 FIFO 深度了,此时 FIFO 是满状态。当然,此条件成立的前提是空状态禁止读操作、满状态禁止写操作。
(3) 同理,由于异步延迟逻辑的存在,满状态信号也不是实时的。但是也相当于提前判断了满状态信号,此时不再进行写 FIFO 操作也不会影响应用的正确性。
(4) 牢记,写满状态信号,是在写时钟域产生的。
◆格雷码
(1) 当读写时钟都是同一个时钟时,此时 FIFO 是同步的,直接对读写指针进行比对,产生空、满信号即可。
(2) 当读写时钟是异步的时候,因为读时钟域产生读空信号,写时钟域产生写满信号,所以产生空逻辑信号时,需要将写指针同步到读时钟域,再与读指针进行比较;产生满逻辑信号时,需要将读指针同步到写时钟域,再与写指针进行比较。
(3) 因为读写指针的信号宽度一般都是大于 1bit 的,所以同步处理时不能直接对多位宽的读写指针进行延迟打拍,需要借助格雷码对读写指针进行转换,保证每一个周期内地址指针只有 1bit 变化,然后再进行延迟打拍的同步处理。
(4) 4bit 的二进制码与格雷码之间的变化关系如下所示,其中 ⊕ 表示异或操作符。由图可知,二进制码对应的十六进制码递增时,二进制码对应的相邻的两个格雷码之间只有 1bit 数据有变化。当多位宽信号每次只有 1bit 数据变化时,可以使用延迟打拍的方法对其进行同步处理。
(5) 下面对空逻辑的产生进行举例说明:
5.1) 首先需要对写指针 waddr 进行组合逻辑的格雷码变换 waddr_gray。
5.2) 为了保证 waddr_gary 在读时钟域每次被采集时只有 1bit 数据变化,则 waddr_gray 需要在其源时钟域即写时钟域进行一拍缓存 waddr_gray_d。因为 waddr 到 waddr_gray 的组合逻辑变换时,每次两者之间不只是有 1bit 变化的。
5.3) 在读时钟域对 waddr_gray_d 进行打拍同步,得到读时钟域同步后的写指针为 waddr_gray_rclk。
5.4) 根据格雷码变换规则,空信号有效时二进制码相等的读写指针,变为格雷码之后仍然相等。所以直接使用 waddr_gray_rclk 与读指针进行组合逻辑变换后的格雷码进行相等比较,即可产生读空信号逻辑。
5.5) 需要说明的是,满信号有效时,带有拓展位的读写指针高 1bit 相反、低位相同。所以变为格雷码之后,写满信号产生的条件,则是读写指针高 2bit 相反、低位相同 (请读者思考一下为什么?)。
FIFO 设计
◆设计要求
为设计应用于各种场景的 FIFO,这里对设计提出如下要求:
(1) FIFO 是异步的,即读写控制信号来自不同的时钟域。
(2) FIFO 深度、宽度参数化,输出空、满状态信号,并输出一个可配置的满状态信号。当 FIFO 内部数据达到设置的参数数量时,该信号拉高,此时需要对格雷码进行反解码。
(3) 输入数据和输出数据位宽可以不一致,但要保证写数据、写地址位宽与读数据、读地址位宽的一致性。例如写数据位宽 8bit,写地址位宽为 6bit(64 个数据)。如果输出数据位宽要求 32bit,则输出地址位宽应该为 4bit(16 个数据)。
◆双口 RAM 设计
RAM 地址位宽、数据位宽等端口参数可配置,读写位宽一致。实际中 RAMDP(Dual Port) 是需要使用 Memory IP 的,这里创建的 RAM 并没有考虑到异步问题。
Verilog 描述如下。
module ramdp
#( parameter AW = 5 ,
parameter DW = 16
)
(
input CLK_WR , //写时钟
input [DW-1:0] D , //写数据
input WR_EN , //写使能
input [AW-1:0] ADDR_WR ,//写地址
input CLK_RD , //读时钟
input RD_EN , //读使能
input [AW-1:0] ADDR_RD ,//读地址
output reg [DW-1:0] Q //读数据
);
reg [DW-1:0] mem [(1<
◆计数器设计
计数器用于产生读写地址信息,位宽可配置,不需要设置结束值,让其溢出后自动重新计数即可。同时该计数器还具有格雷码转换与缓存的功能。
Verilog 描述如下。
module ccnt_gray
#(parameter W = 32'd8
)
(
input rstn ,
input clk ,
input en ,
output [W-1:0] cnt ,
output [W-1:0] cnt_gray ,
output [W-1:0] cnt_gray_d
);
reg [W-1:0] cnt_r ;
always @(posedge clk or negedge rstn) begin
if (!rstn) begin
cnt_r <= 'b0 ;
end
else if (en) begin
cnt_r <= cnt_r + 1'b1 ;
end
end
assign cnt = cnt_r ;
assign cnt_gray = cnt ^ (cnt>>1);
reg [W-1:0] cnt_gray_buf ;
always @(posedge clk or negedge rstn) begin
if (!rstn) begin
cnt_gray_buf <= 'b0 ;
end
else begin
cnt_gray_buf <= cnt_gray ;
end
end
assign cnt_gray_d = cnt_gray_buf ;
endmodule
◆多位宽数据同步设计
读写指针进行格雷码变换并缓存后,每一个计数周期内地址指针只有 1bit 变化,所以可以直接使用延迟打拍的方法进行同步。数据宽度、同步级数均可配置。
Verilog 描述如下。
module data1c_sync
#(parameter DW = 8,
parameter STAGE = 3
)
(
input rstn ,
input clk ,
input [DW-1:0] data_in ,
output [DW-1:0] data_out
);
reg [DW-1: 0] data_r [STAGE-1: 0];
integer i ;
always @(posedge clk or negedge rstn) begin
if (!rstn) begin
for (i=0; i
◆格雷码反解码
因为该 FIFO 还存在一个可配置的满状态信号输出,所以需要对格雷码同步后的读指针进行反解码,然后在写时钟域与写指针进行比较,以判读当前 FIFO 中数据的具体个数。
module gray_decode
#(parameter W = 32'd8
)
(
input [W-1:0] gray ,
output [W-1:0] gray_decode
);
integer i ;
reg [W-1:0] gray_decode_r ;
always @(*) begin
gray_decode_r[W-1] = gray[W-1];
for (i=W-2; i>=0; i=i-1) begin
gray_decode_r[i] = gray_decode_r[i+1] ^ gray[i];
end
end
assign gray_decode = gray_decode_r ;
endmodule
◆FIFO 设计
该模块为 FIFO 的主体部分,产生读写控制逻辑,包括读写指针、读写有效时刻以及空、满、可编程满状态的逻辑。
实际上此模块已经是典型的 FIFO 设计,有需要的读者可以直接使用该层次的 FIFO 代码进行测试,甚至应用到自己的设计之中。
module fifo
#( parameter DW = 16 ,
parameter DEPTH = 32 ,
parameter PROG_DEPTH = 16) //可设置深度
(
input rstn, //读写使用一个复位
input wclk, //写时钟
input wren, //写使能
input [DW-1: 0] wdata, //写数据
output wfull, //写满标志
output prog_full, //可编程满标志
input rclk, //读时钟
input rden, //读使能
output [DW-1 : 0] rdata, //读数据
output rempty //读空标志
);
localparam AW = log2b(DEPTH);
//==================== push/wr counter ===============
//wptr/waddr using one more bit to indict new-loop
wire [AW:0] waddr ;
wire [AW:0] waddr_gray ;
wire [AW:0] waddr_gray_d ;
ccnt_gray #(.W(AW+1))
u_push_cnt(
.rstn (rstn),
.clk (wclk),
.en (wren && !wfull), //full 时禁止写
.cnt (waddr),
.cnt_gray (waddr_gray),
.cnt_gray_d (waddr_gray_d)
);
// sync: wptr from wclk to rclk
wire [AW:0] waddr_gray_rclk ;
data1c_sync #(.DW(AW+1), .STAGE(3))
u_waddr_to_rclk
(
.rstn (rstn),
.clk (rclk),
.data_in (waddr_gray_d),
.data_out (waddr_gray_rclk)
);
//============== pop/rd counter ===================
wire [AW:0] raddr ;
wire [AW:0] raddr_gray ;
wire [AW:0] raddr_gray_d ;
ccnt_gray #(.W(AW+1))
u_pop_cnt(
.rstn (rstn),
.clk (rclk),
.en (rden && !rempty), //full 时禁止写
.cnt (raddr),
.cnt_gray (raddr_gray),
.cnt_gray_d (raddr_gray_d)
);
// sync: rdtr from rclk to wclk
wire [AW:0] raddr_gray_wclk ;
data1c_sync #(.DW(AW+1), .STAGE(3) )
u_raddr_to_wclk
(
.rstn (rstn),
.clk (wclk),
.data_in (raddr_gray_d),
.data_out (raddr_gray_wclk)
);
//============== full/empty logic ===================
//(1) empty logic
assign rempty = (raddr_gray == waddr_gray_rclk);
//(2) full logic
assign wfull = (waddr_gray[AW:AW-1] == ~raddr_gray_wclk[AW:AW-1]) &&
(waddr_gray[AW-2:0] == raddr_gray_wclk[AW-2:0]) ;
//(3) porgrammable full
//waddr gray decode
wire [AW:0] raddr_degray_wclk ;
gray_decode #(.W(AW+1))
u_waddr_degray_rclk (
.gray (raddr_gray_wclk),
.gray_decode (raddr_degray_wclk)
);
//prog full
wire [AW:0] waddr_delta = waddr >= raddr_degray_wclk ?
(waddr - raddr_degray_wclk) :
((1<<(AW+1)) + waddr - raddr_degray_wclk) ;
assign prog_full = waddr_delta >= PROG_DEPTH ;
//双口 ram 例化
ramdp #(.AW(AW), .DW (DW))
u_ramdp
(
.CLK_WR (wclk),
.WR_EN (wren & !wfull), //写满时禁止写
.ADDR_WR (waddr[AW-1:0]),
.D (wdata[DW-1:0]),
.CLK_RD (rclk),
.RD_EN (rden & !rempty), //读空时禁止读
.ADDR_RD (raddr[AW-1:0]),
.Q (rdata[DW-1:0])
);
function integer log2b ;
input integer depth ;
for (log2b=0; (1<
◆FIFO 调用
下面可以调用设计的 FIFO,完成多位宽数据传输的异步处理。
写数据位宽为 4bit,写深度为 32。
读数据位宽为 16bit,读深度为 8,可配置 full 深度为 16。
该模块只是 FIFO 的一个具体应用,用于数据的异步传输、缓存与整合。
//ensure write rate < read rate
module fifo_buf
#( parameter DWI = 4 , //width 4
parameter AWI = 5 , //depth 32
parameter DWO = 16 ,
parameter AWO = 3 ,
parameter PROG_DEPTH = 16
)
(
input rstn, //读写使用一个复位
//data in
input din_clk, //写时钟
input din_en, //写使能
input [DWI-1: 0] din, //写数据
//data out
input dout_clk, //读时钟
output dout_valid, //读使能
output [DWO-1 : 0] dout //读数据
);
wire wfull ; //写满标志
wire prog_full ; //可编程满标志
wire rempty ; //读空标志
wire [DWI-1:0] rdata_fifo ;
wire rden_fifo ;
fifo #(.DW(DWI), .DEPTH(1<
◆testbench
testbench 描述如下,用于测试空、满逻辑信号,以及读写操作。测试中只列举了输入数据位宽小于输出数据位宽的情景。
`timescale 1ns/1ns
`define SMALL2BIG
module test ;
`ifdef SMALL2BIG
reg rstn ;
reg clk_slow, clk_fast ;
reg [3:0] din ;
reg din_en ;
wire [15:0] dout ;
wire dout_valid ;
//reset
initial begin
clk_slow = 0 ;
clk_fast = 0 ;
rstn = 0 ;
#50 rstn = 1 ;
end
//读时钟 clock_slow 较快于写时钟 clk_fast 的 1/4
//保证读数据稍快于写数据
parameter CYCLE_WR = 40 ;
always #(CYCLE_WR/2/4) clk_fast = ~clk_fast ;
always #(CYCLE_WR/2-1) clk_slow = ~clk_slow ;
//data generate
initial begin
din = 16'h4321 ;
din_en = 0 ;
wait (rstn) ;
//(1) 测试 full、prog_full、empyt 信号
force test.u_data_buf.u_fifo.rden = 1'b0 ;
repeat(32) begin
@(negedge clk_fast) ;
din_en = 1'b1 ;
din = {$random()} % 16;
end
@(negedge clk_fast) din_en = 1'b0 ;
//(2) 测试数据读写
#500 ;
rstn = 0 ;
#10 rstn = 1 ;
release test.u_data_buf.u_fifo.rden ;
repeat(60) begin
@(negedge clk_fast) ;
if (!test.u_data_buf.u_fifo.wfull) begin
din_en = 1'b1 ;
din = {$random()} % 16;
end
else begin
din_en = 1'b0 ;
end
end
//(3) 停止读取再一次测试 empyt、full、prog_full 信号
#800 ;
force test.u_data_buf.u_fifo.rden = 1'b0 ;
repeat(18) begin
@(negedge clk_fast) ;
din_en = 1'b1 ;
din = {$random()} % 16;
end
end
fifo_buf #(.DWI(4), .AWI(5), .DWO(16), .AWO(3), .PROG_DEPTH(16))
u_data_buf(
.rstn (rstn),
.din_clk (clk_fast),
.din (din),
.din_en (din_en),
.dout_clk (clk_slow),
.dout (dout),
.dout_valid (dout_valid));
`else // !`ifdef SMALL2BIG
`endif
//stop sim
initial begin
forever begin
#100;
if ($time >= 5000) $finish ;
end
end
endmodule
◆仿真分析
根据 testbench 中的 3 步测试激励,分析如下:
测试 (1) : FIFO 端口及一些内部信号时序结果如下。
由图可知,FIFO 内部开始写数据,空状态信号 rempty 拉低(红色 M1 ) 之前有一段时间延迟,这是写地址同步延时导致的。
由于此时没有进行读 FIFO 操作,所以 prog_full 与 full 拉高 (黄色 M2 与绿色 M3) 几乎没有延迟。
测试 (2) : FIFO 同时进行读写时,fifo 与 fifo_buf 模块的端口信号如下所示。
由图可知,数据开始传输时,fifo 模块的等位宽数据输出、fifo_buf 整合之后的数据输出,均与输入数据对应,没有传输错误。
测试 (3) :整个 FIFO 读写行为及读停止的时序仿真图如下所示。
由图可知,读写操作同时进行时,wfull 信号会不断翻转 (M4 时刻之前),这是因为此时 fifo 的使用方法是非满即写,非空即读。
M4 时刻禁止写操作后(din_en 恒为 0),由于读一致存在,所以 full 信号会拉低并保持,表示 fifo 中数据一直未满。而 prog_full 也会相继拉低 (M5 时刻),表示 FIFO 中的数据已经低于配置的数目。
当恢复写操作后 (din_en 恒为 1,对应 M6 时刻),prog_full 与 full 信号相继拉高。
全部0条评论
快来发表一下你的评论吧 !