PyTorch教程-13.6. 多个 GPU 的简洁实现

电子说

1.3w人已加入

描述

为每个新模型从头开始实施并行性并不好玩。此外,优化同步工具以获得高性能有很大的好处。在下文中,我们将展示如何使用深度学习框架的高级 API 来执行此操作。数学和算法与第 13.5 节中的相同。毫不奇怪,您至少需要两个 GPU 才能运行本节的代码。

 

import torch
from torch import nn
from d2l import torch as d2l

 

 

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

 

13.6.1。玩具网络

让我们使用一个比13.5 节中的 LeNet 更有意义的网络 ,它仍然足够容易和快速训练。我们选择了一个 ResNet-18 变体(He et al. , 2016)。由于输入图像很小,我们对其进行了轻微修改。特别地,与第 8.6 节的不同之处在于,我们在开始时使用了更小的卷积核、步长和填充。此外,我们删除了最大池化层。

 

#@save
def resnet18(num_classes, in_channels=1):
  """A slightly modified ResNet-18 model."""
  def resnet_block(in_channels, out_channels, num_residuals,
           first_block=False):
    blk = []
    for i in range(num_residuals):
      if i == 0 and not first_block:
        blk.append(d2l.Residual(out_channels, use_1x1conv=True,
                    strides=2))
      else:
        blk.append(d2l.Residual(out_channels))
    return nn.Sequential(*blk)

  # This model uses a smaller convolution kernel, stride, and padding and
  # removes the max-pooling layer
  net = nn.Sequential(
    nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
    nn.BatchNorm2d(64),
    nn.ReLU())
  net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
  net.add_module("resnet_block2", resnet_block(64, 128, 2))
  net.add_module("resnet_block3", resnet_block(128, 256, 2))
  net.add_module("resnet_block4", resnet_block(256, 512, 2))
  net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
  net.add_module("fc", nn.Sequential(nn.Flatten(),
                    nn.Linear(512, num_classes)))
  return net

 

 

#@save
def resnet18(num_classes):
  """A slightly modified ResNet-18 model."""
  def resnet_block(num_channels, num_residuals, first_block=False):
    blk = nn.Sequential()
    for i in range(num_residuals):
      if i == 0 and not first_block:
        blk.add(d2l.Residual(
          num_channels, use_1x1conv=True, strides=2))
      else:
        blk.add(d2l.Residual(num_channels))
    return blk

  net = nn.Sequential()
  # This model uses a smaller convolution kernel, stride, and padding and
  # removes the max-pooling layer
  net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
      nn.BatchNorm(), nn.Activation('relu'))
  net.add(resnet_block(64, 2, first_block=True),
      resnet_block(128, 2),
      resnet_block(256, 2),
      resnet_block(512, 2))
  net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
  return net

 

13.6.2。网络初始化

我们将在训练循环内初始化网络。有关初始化方法的复习,请参阅第 5.4 节。

 

net = resnet18(10)
# Get a list of GPUs
devices = d2l.try_all_gpus()
# We will initialize the network inside the training loop

 

The initialize function allows us to initialize parameters on a device of our choice. For a refresher on initialization methods see Section 5.4. What is particularly convenient is that it also allows us to initialize the network on multiple devices simultaneously. Let’s try how this works in practice.

 

net = resnet18(10)
# Get a list of GPUs
devices = d2l.try_all_gpus()
# Initialize all the parameters of the network
net.initialize(init=init.Normal(sigma=0.01), ctx=devices)

 

Using the split_and_load function introduced in Section 13.5 we can divide a minibatch of data and copy portions to the list of devices provided by the devices variable. The network instance automatically uses the appropriate GPU to compute the value of the forward propagation. Here we generate 4 observations and split them over the GPUs.

 

x = np.random.uniform(size=(4, 1, 28, 28))
x_shards = gluon.utils.split_and_load(x, devices)
net(x_shards[0]), net(x_shards[1])

 

 

[08:00:43] src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable)

 

 

(array([[ 2.2610207e-06, 2.2045981e-06, -5.4046786e-06, 1.2869955e-06,
     5.1373163e-06, -3.8297967e-06, 1.4339059e-07, 5.4683451e-06,
     -2.8279192e-06, -3.9651104e-06],
    [ 2.0698672e-06, 2.0084667e-06, -5.6382510e-06, 1.0498458e-06,
     5.5506434e-06, -4.1065491e-06, 6.0830087e-07, 5.4521784e-06,
     -3.7365021e-06, -4.1891640e-06]], ctx=gpu(0)),
 array([[ 2.4629783e-06, 2.6015525e-06, -5.4362617e-06, 1.2938218e-06,
     5.6387889e-06, -4.1360108e-06, 3.5758853e-07, 5.5125256e-06,
     -3.1957325e-06, -4.2976326e-06],
    [ 1.9431673e-06, 2.2600434e-06, -5.2698201e-06, 1.4807417e-06,
     5.4830934e-06, -3.9678889e-06, 7.5751018e-08, 5.6764356e-06,
     -3.2530229e-06, -4.0943951e-06]], ctx=gpu(1)))

 

Once data passes through the network, the corresponding parameters are initialized on the device the data passed through. This means that initialization happens on a per-device basis. Since we picked GPU 0 and GPU 1 for initialization, the network is initialized only there, and not on the CPU. In fact, the parameters do not even exist on the CPU. We can verify this by printing out the parameters and observing any errors that might arise.

 

weight = net[0].params.get('weight')

try:
  weight.data()
except RuntimeError:
  print('not initialized on cpu')
weight.data(devices[0])[0], weight.data(devices[1])[0]

 

 

not initialized on cpu

 

 

(array([[[ 0.01382882, -0.01183044, 0.01417865],
     [-0.00319718, 0.00439528, 0.02562625],
     [-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(0)),
 array([[[ 0.01382882, -0.01183044, 0.01417865],
     [-0.00319718, 0.00439528, 0.02562625],
     [-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(1)))

 

Next, let’s replace the code to evaluate the accuracy by one that works in parallel across multiple devices. This serves as a replacement of the evaluate_accuracy_gpu function from Section 7.6. The main difference is that we split a minibatch before invoking the network. All else is essentially identical.

 

#@save
def evaluate_accuracy_gpus(net, data_iter, split_f=d2l.split_batch):
  """Compute the accuracy for a model on a dataset using multiple GPUs."""
  # Query the list of devices
  devices = list(net.collect_params().values())[0].list_ctx()
  # No. of correct predictions, no. of predictions
  metric = d2l.Accumulator(2)
  for features, labels in data_iter:
    X_shards, y_shards = split_f(features, labels, devices)
    # Run in parallel
    pred_shards = [net(X_shard) for X_shard in X_shards]
    metric.add(sum(float(d2l.accuracy(pred_shard, y_shard)) for
            pred_shard, y_shard in zip(
              pred_shards, y_shards)), labels.size)
  return metric[0] / metric[1]

 

13.6.3。训练

和以前一样,训练代码需要执行几个基本功能以实现高效并行:

需要在所有设备上初始化网络参数。

在迭代数据集时,小批量将被划分到所有设备上。

我们跨设备并行计算损失及其梯度。

梯度被聚合并且参数被相应地更新。

最后,我们计算精度(再次并行)以报告网络的最终性能。训练例程与前面章节中的实现非常相似,只是我们需要拆分和聚合数据。

 

def train(net, num_gpus, batch_size, lr):
  train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
  devices = [d2l.try_gpu(i) for i in range(num_gpus)]
  def init_weights(module):
    if type(module) in [nn.Linear, nn.Conv2d]:
      nn.init.normal_(module.weight, std=0.01)
  net.apply(init_weights)
  # Set the model on multiple GPUs
  net = nn.DataParallel(net, device_ids=devices)
  trainer = torch.optim.SGD(net.parameters(), lr)
  loss = nn.CrossEntropyLoss()
  timer, num_epochs = d2l.Timer(), 10
  animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
  for epoch in range(num_epochs):
    net.train()
    timer.start()
    for X, y in train_iter:
      trainer.zero_grad()
      X, y = X.to(devices[0]), y.to(devices[0])
      l = loss(net(X), y)
      l.backward()
      trainer.step()
    timer.stop()
    animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))
  print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch '
     f'on {str(devices)}')

 

 

def train(num_gpus, batch_size, lr):
  train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
  ctx = [d2l.try_gpu(i) for i in range(num_gpus)]
  net.initialize(init=init.Normal(sigma=0.01), ctx=ctx, force_reinit=True)
  trainer = gluon.Trainer(net.collect_params(), 'sgd',
              {'learning_rate': lr})
  loss = gluon.loss.SoftmaxCrossEntropyLoss()
  timer, num_epochs = d2l.Timer(), 10
  animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
  for epoch in range(num_epochs):
    timer.start()
    for features, labels in train_iter:
      X_shards, y_shards = d2l.split_batch(features, labels, ctx)
      with autograd.record():
        ls = [loss(net(X_shard), y_shard) for X_shard, y_shard
           in zip(X_shards, y_shards)]
      for l in ls:
        l.backward()
      trainer.step(batch_size)
    npx.waitall()
    timer.stop()
    animator.add(epoch + 1, (evaluate_accuracy_gpus(net, test_iter),))
  print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch '
     f'on {str(ctx)}')

 

让我们看看这在实践中是如何工作的。作为热身,我们在单个 GPU 上训练网络。

 

train(net, num_gpus=1, batch_size=256, lr=0.1)

 

 

test acc: 0.90, 14.0 sec/epoch on [device(type='cuda', index=0)]

 

pytorch

 

train(num_gpus=1, batch_size=256, lr=0.1)

 

 

test acc: 0.93, 14.3 sec/epoch on [gpu(0)]

 

pytorch

接下来我们使用 2 个 GPU 进行训练。与 13.5 节中评估的 LeNet 相比,ResNet-18 的模型要复杂得多。这就是并行化显示其优势的地方。计算时间明显大于同步参数的时间。这提高了可伸缩性,因为并行化的开销不太相关。

 

train(net, num_gpus=2, batch_size=512, lr=0.2)

 

 

test acc: 0.89, 8.8 sec/epoch on [device(type='cuda', index=0), device(type='cuda', index=1)]

 

pytorch

 

train(num_gpus=2, batch_size=512, lr=0.2)

 

 

test acc: 0.91, 14.2 sec/epoch on [gpu(0), gpu(1)]

 

pytorch

13.6.4。概括

Gluon 通过提供上下文列表为跨多个设备的模型初始化提供原语。

在可以找到数据的设备上自动评估数据。

在尝试访问该设备上的参数之前,请注意初始化每个设备上的网络。否则你会遇到错误。

优化算法自动聚合多个 GPU。

13.6.5。练习

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分