RC低通滤波电路:直接带载对电路特性造成的影响

电子说

1.3w人已加入

描述

滤波是频域范畴,它说的是不同频率的信号经过一个电路处理后,信号发生变化的问题,变化包含了原始信号幅值和相位的变化,滤波电路对信号的幅值做出的响应称为幅频响应,对信号相位做出的反应称为相频响应。每一个频率的信号对应在时域就是信号的充放电特性。

滤波通常借助动态器件如电感和电容,利用它们在不同频率下阻抗变化,从而在其上面产生压降,对我们需要去除的信号进行衰减,从而达到滤波的效果。

我们知道电感和电容的阻抗特性其实就是储能特性,储能意味着时间特性,需要过程,这个过程是滤波特性的体现的一方面。

2、分析方法和工具

在s域,写出回路的传递函数,根据波特图进行分析,传递函数是输入和输出的增益关系

为了同时分析相位和幅值引入虚数,并且在虚平面进行分析,和频率相关的电路阻值特性,我们用阻抗描述,通常包含实部与虚部,这个数学工具的引入,包含了幅值和相位信息的体现,简化了分析难度。

mcu

角速度描述表示

注:

由于自然界正弦信号认为是单一频率的信号,是基础信号,不可再分解,其它信号是以正弦为基础的合成信号,所以,以下从电路输入某个频率的正弦信号开始分析。正弦信号输入这些线性电路,达到稳定后,输出信号只会发生幅值和相位的改变,不改变信号的频率。

3、RC低通滤波电路结构和特性

(1)RC滤波电路,图中包含了这个电路的传递函数G(s)表达式

mcu

RC滤波电路

从传递函数解出一个称作为极点的根, 即令传递函数的分母为零 ,最后得出一个频率,由于这个频率从波特图上看,曲线在这个点前后发生突变的现象,我们形象地将这个频率称为“转折频率”,转折频率意味着一个响应发生“突变”的频率点,转折意味着响应的转弯点,前后会发生较大的变化。记住波特图图横轴是频率,代表着一系列不同频率信号通过这个电路后,输出会发生不一样的变化,是一系列的信号,不是单一信号。转折频率代表了电路的固有特性,是电路参数和结构导致的结果,是电路的固有属性。

mcu

RC的转折频率

借助matalab工具进行绘制响应曲线,其它工具也可以,只要是自己熟悉的工具即可

**下面我们对R和C赋值,R=100Ω,C1=100uF,得到转折频率f=15.915Hz**

syms s R C % 定义符号参量

R=100; C=100*10^-6; % 给分子分母赋值

G(s)=1/(sRC+1); % 传递函数表达式

num=[0,1]; % 分子系数 den=[1/100,1]; % 分母系数

G1=tf(num,den)% 得出传递函数

margin(G1)% 画出增益和相位裕量图

grid on; % 得出传递函数为G(s)=1/(s/100 + 1)

mcu

RC的幅频和相频曲线

曲线说明

(1) 直流增益 ,即低频增益,在传递函数中令s=0,得到直流增益为1,转换成dB刚好为0dB(0dB=20log1),这正是我们无源器件低通滤波器的特点,不能放大信号,在低频段,电容容抗几乎为无穷大,即电容为开路状态,信号被原模原样传输过来,这时候增益就是1,由于电容看做开路 ,那么阻性电路中,信号自然也不会产生任何相位偏移。

mcu

直流增益

(2) 转折频率的地方 ,这个频率的信号增益被衰减到原来的70.7%,也就是-3dB的地方,图中为-2.99dB对应转折频率为15.9Hz,这是由于实际计算转折频率为15.915Hz,存在一点误差。 对相位来说,在这个频率点,相位会偏移-45°,负号表示信号被滞后了,从时间看,也就是被延时了。 但是对其它不同频率信号在这个频率点前后响应出现较大的不同。 之前看做不衰减也就是直流增益部分,之后信号被快速衰减,同时产生一定的相移。

(3) 延时时间计算 ,也就是相位延迟和具体时间的对应关系,方便我们理解相位和延迟之间的关系,延迟时间为:延迟时间=Kd*周期

延迟系数Kd ,即在一个360°周期里延迟角度占有的比例,这里是45/360=1/8,也就是45°占有360°的1/8。

转折频率约为15.9Hz,即一个周期为62.89ms。

那么,输入信号被延时时间为62.89ms*1/8=7.86ms,输出信号晚来输入信号7.86ms。

如下是对一个100Hz和200Hz信号进行延时举例,也说明了相位差和时间差之间的关联,它们一一对应(one to one)

mcu

相位延迟的含义表示

用TINA仿真进行波形验证,借助仿真软件验证你的结果,并且可以帮助你理解

mcu

RC仿真电路

相比于输入信号Uin,稳态后,电容电压为输出信号被滞后45°,并且幅度被衰减到70.7%,从下图波形也可以看出。 (稳态后,电阻上电压超前了45°,想象一下,这个电路测量对象不同,带来了“高通”和“低通”的概念)

mcu

仿真波形

4、直接带载后会发生什么?

如下图,我们将R2放置在电路中,模拟一个负载

mcu

带载的RC电路

我们再次借助MATLAB化简方程

%zo输出阻抗,是电容C1和电阻R2的并联值 % z是电路总阻抗 % G(s)传递函数

符号 R1 R2 C1

zo=R2/(sC1R2+1);z=R1+zo;

G(s)=zo/z;G1(s)=simplify(G(s))%化简代数式

最后得出传递函数为G(s)=G1(s)=R2/(R1 + R2 + C1R1R2*s)

同时令传递函数的分母为零解出极点,如上图,我们可以把它写作为频率的形式,这个频率在波特图中正好是转折频率,我们利用MATLAB进行验证

mcu

带载后RC电路的转折频率

转折频率处,输出信号相比输入信号,输入信号的幅值被衰减到原来的70.7%,相位被滞后45°(图中就是-45,符号表示信号相位被滞后)

**下面我们对R1、R2和C1赋值,R1=100Ω、R2=20Ω,C1=100nF**

符号 R1 R2 C1 s

R1=100;R2=20;C1=100*10^-9;

zo=R2/(sC1R2+1);z=R1+zo;

G(s)=from/z;

G1(s)=simplify(G(s))%化简代数式

% G(s)=G1(s)=R2/(R1 + R2 + C1R1R2*s)

%得到传递函数表达式 G(s)=G1(s)=100000/(s+600000)

num=[0.100000];den=[1.600000];

G1=tf(num,den)% 得到传递函数

保证金(G1)

网格打开;

最终得到幅频和相频特性图

mcu

幅频和相频特性图

(1)直流增益 ,也就是低频下的增益,我们对传递函数频率项s=0,那么就得到直流增益,这也是我们在做电源环路中分析中采取的方法得到直流增益。 这里直流增益如下,也就是除去了时效性动态器件的影响,纯阻性表现的特性,就是一个简单的分压电路。

mcu

直流增益

注:1/6刚好是-15.6dB,负分贝表示信号被衰减

(2)转折频率处 ,我们经过简单计算,得到转折频率为f=95.49kHz,如下图,转折频率处信号衰减到原来的70.7%,即1/6*70%=0.1178,即为-18.6dB,波特图中可以看出,同时相位被滞后45°(-45℃)。

这个电路,我们对并联在C1上的R2取值为无限大,我们将R2取值无穷大后,只需要把传递函数简单化简后求极限,则电路重回到开头的RC电路,传递函数和RC低通电路相同。

mcu

转折频率

注:负载的直接接入导致转折频率会向右移,即转折频率比单纯的RC会偏高,若R2趋于∞,那么转折频率由95.49k变为15.92k(用Excel快速计算一下)。

实际中滤波电路该怎么样接负载

实际当中,尤其是采样电路,我们经常会用到RC低通滤波,我们会采用输入阻抗很大的运放组成跟随器。

在MCU中,采样输入端口往往也是阻抗很大,所以我们也可以直接用RC滤波进行直接接入

高输入阻抗端口,这些都是让我们想要的信号幅值不发生衰减,而且几乎不产生相移、设定的转折频率不发生偏移,信号能够被正常采集。

  审核编辑:汤梓红
 
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分