基于虚拟仪器及DSP的静电感应式电子围栏设计

处理器/DSP

876人已加入

描述

 

  电子围栏是防盗系统数字化的产物,其目的是对受保护区域进行监控,当有非法人员入侵保护区域或从保护区域中逃脱时,将发出报警信号,并及时通知防护人员对报警信息进行确认。目前市场上电子围栏监控系统主要有视频监控系统、红外对射周界报警系统、静电感应式电子围栏等。视频监控系统以其直观、方便、信息内容丰富而广泛应用于许多场合。目前,在国内外市场上,主要分为数字控制的模拟视频监控和数字视频监控两类。视频监控系统正处在数控模拟系统与数字系统混合应用并将逐渐向数字系统过渡的阶段。红外对射周界报警系统是对外围周界进行防范和控制管理的系统,由发射端和接收端组成射束网,当有人跨界时,则有2束或4束红外线被遮挡切断,接收端输出报警信号,触发控制主机报警。视频监控系统和红外对射防盗系统适合仓库、小区等小范围的安全防护。本文介绍的基于虚拟仪器及DSP的静电感应式电子围栏应用静电场感应原理。系统工作时在发射线上加上一定频率的方波信号,当入侵者接近围栏时接收线上的信号幅度就会发生变化,经检测器分析处理后,主机发出报警信号。这种电子围栏无盲区、无死角,前端围栏是有形的围栏,可以随着地形高低起伏任意架设,能够很好地适应各种环境。

  1 系统原理及总体设计方案

  1.1 静电感应原理

  在感应场区有电感耦合和电容耦合2种形式,在高阻抗的高频电路中容易产生电容耦合。

  如图1所示,设导体g上加有高频电压Eg,另一导体s作为感受器,导体与大地之间的分布电容为Cs,导体g与导体s间的分布电容为Ggs,则g在s上产生的感应电压为:

  

dsp

 

  当Cs和Cgs发生变化时,Us就随之而发生变化。本系统中就是根据测量Us的变化来判断是否有人非法侵入,如果Us的变化超过报警门限值,系统将发出相应的报警信号。

  

dsp

 

  1.2 静电感应式电子围栏工作原理

  工作原理如图2所示,把一个方波信号加在发射线圈上,接收线圈上同时也会有感应电压存在。当有人靠近感应线圈时,由于人的介电常数大于空气的介电常数,这时接收线和地之间的分布电容Cs增大,同时发射线和地之间、发射线和接受线之间的分布电容都会有变化,但在本系统中可以忽略。由式(1)可得,当Cs增大时,接收线电压幅度Us会下降,根据电压下降幅度,即可以判断是否有人入侵。

  2 系统硬件设计

  2.1 系统总体结构

  系统采用双处理器的结构,DSP(TMS320VC5402)用来进行数据采集及处理,单片机(STC89LE58RD+)对整个系统进行控制。两个处理器之间通过HPI总线完成通信,STC89LE58RD+为主机,TMS320VC5402为从机,由于单片机上没有HPI总线接口,因此用单片机的几个I/O口模拟HPI总线与TMS320VC5402通信。数据采集芯片(AIC23B)与DSP的MCBPS口相连,MCBPS0口用来与DSP进行数据传输,DSP通过MCBPS2口初使化AIC23 B。系统硬件结构如图3所示。

  

dsp

 

  由于数据运算量大,需要较大的数据存储空间,DSP外扩了一片6416。为了节省资源,把DSP的程序存储区放到单片机的内部FLASH中。

  方波信号通过单片机用定时器中断方式将一个I/O端口上的信号取反。用光电隔离的方法提高系统的稳定性,将光耦输出信号加在脉冲变压器的初级,其输出端产生发射信号。发射信号的电压幅度较高,但电流值极小,不会对人或动物造成伤害。

  8位拨码开关的低4位用来设置本机地址,高4位设置发射端的发射信号频率值。远程监控通过RS 485总线完成,有人人侵或系统发生故障时单片机即向远端监控室发出相应的报警信号。

  2.2 DSP-C54x的片外设备

  C54x系列所有芯片的CPU结构完全相同,但是它们片内集成的CPU外围电路却不尽相同。以C5402为例,片外设备包括可编程PLL的时钟发生器、2个定时器、2个多通道缓冲串口、片内存储器、DMA控制器和外设总线控制器等,如图4所示。

  

dsp

 

  C54x DSP与AIC23B的引脚连接原理图如图5所示。AIC23B的控制接口以SPI方式与DSP的MCBSP2(由于C5402只有MCBSP0/1,对C5402指的是MCBSP1)通信,此时AIC23B为从设备,MCBSP2的接收时钟与AIC23B的SCLK信号全部由MCBSP2的时钟提供;与AIC23B进行数据接口的MCBSP0工作在从属模式下,此时AIC23B为主设备,MCBSP0的发送与接收时钟均由AIC23B的BCLK信号提供。

  

dsp

 

  3 软件算法设计及仿真

  软件设计在LabWindows平台下进行,在实验室及现场应用中均得到了正确的仿真结果,并且具有很强的适应性和可移植性。

  3.1 数据采集

  本软件用声卡完成数据采集,在LabWindows/CVI下对声卡进行数据采集的控制。LabWindows/CVI下声卡的控制可以直接调用自带函数,也可以调用VC++中的API函数,本设计调用了API函数。声卡采集数据流程如图6所示。

  

dsp

 

  3.2 数据处理

  系统通过检测接收端电压的变化幅度来判断是否发出报警信号,因此要对接收到的交流信号进行数字整流,以便判断电压的变化幅度。数据处理框图如图7所示。

  3.2.1 带通滤波器的设计

  在仿真程序中带通滤波器直接调用LabWindows/CVI中的Bw_BPF的函数。但在DSP中数字带通滤波器必须自己设计,IIR滤波器的实现结构分为直接I型,直接Ⅱ型,级联型和并联型。

  直接I型的结构需要2N级延迟单元,直接Ⅱ型与I型相比节省了1/2延迟,即需要N级延迟单元,是最常用的IIR滤波器结构之一。如图8是直接Ⅱ型结构图。

  

dsp

 

  IIR滤波器的设计工具,除了可以利用一些专用的滤波器设计工具程序外,也可以利用Matlab来设计。

  3.2.2 数字整流以及均值滤波算法

  数字整流是将一个数据包中的数据取平均值。由于数字整流后的波形不是很平滑,震动幅度比较大,因此必须再通过一次中值滤波得到比较平滑波形,以便后续的数据处理。均值滤波流程图如图9所示。

  3.3 系统仿真与分析

  3.3.1 仿真结果

  图10是没有人接近感应线时的波形显示,图11为有人接近感应线后的波形显示。两图对比,图11中的波形有明显的下降,波形微分值也发生了相应的变化。

  

dsp

 

  3.3.2 系统的抗干扰性分析

  当有小动物接近感应线圈时,接收线的电压幅度也会下降,但是由于人体对感应线圈感应电容的影响远远大于小动物,因此接收线电压下降幅度远远小于人接近时的下降幅度,所以设定几个不同报警门阈值,就能将人和其他动物区别开来。在雨雪天由于空气湿度发生变化,空气介电常数也发生了变化,导致系统的分布电容发生变化,但是这个变化极小,对本系统几乎无影响。

  由于系统基于电磁感应原理,会受到外部电磁干扰,尤其是相邻系统间的干扰。为了解决这个问题,在相邻系统的发射线上加了不同频率的方波信号,避免了相邻系统间的干扰。本设计中,选用了3 kHz,5 kHz,7 kHz的方波信号,相邻系统的发射端得到不同的发射信号。接收端收到信号以后采用了以发射端信号频率为中心频率、带宽为1 kHz的带通滤波,滤波后去掉干扰信号得到有用信号。

  3.3.3 单系统防护距离

  随着感应线圈长度的变化,线圈和地之间的分布电容也会产生相应的变化,感应线圈越长,分布电容越大。在感应线很长时,人接近感应线后,分布电容的变化较小,会导致系统灵敏度下降,所以单系统的防护距离不宜太长,限定150 m内为宜。

  4 结语

  经过软件仿真和现场测试,得到了正确的数据。在进行了详细的数据分析以后,证明整个系统的设计思路和计算方法是正确的。基于虚拟仪器及DSP的静电感应式电子围栏系统的前端围栏带有高压脉冲电给入侵者极大威慑,有形围栏给入侵者带来了很多阻碍,若强行人侵,则系统自动发出声、光报警,并可以与其他安防系统联动(如防盗报警主机、视频监控系统、110报警等)。该电子围栏能适应各种环境,且误报率极低,克服了传统的红外、微波等技术的缺陷,报警基本不受气候、地形、树木、小动物等影响。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分