许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。 如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040K等ADC的高动态范围、同时采样以及多通道优势。 本文介绍了MAX11040K的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。
高速、Σ-Δ架构的优势
图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。 为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。
引言
许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。 如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040K等ADC的高动态范围、同时采样以及多通道优势。 本文介绍了MAX11040K的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。
高速、Σ-Δ架构的优势
图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。 为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。
图1. 基于MAX11040K的DAS在电网监控中的应用
从图1可以看到,采用两片MAX11040K ADC可以同时测量交流电的三相及零相的电压和电流。 该ADC基于Σ-Δ架构,利用过采样/平均处理得到较高的分辨率。 每个ADC通道利用其专有的电容开关Σ-Δ调制器进行模/数转换。 该调制器将输入信号转换成低分辨率的数字信号,它的平均值代表输入信号的量化信息,时钟频率为24.576MHz时对应的采样率为3.072Msps。 数据流被送入内部数字滤波器处理,消除高频噪声。 处理完成后可以得到高达24位的分辨率。
MAX11040K为4通道同时采样ADC,其输出数据是处理后的平均值,这些数值不能像逐次逼近(SAR) ADC的输出那样被看作是采样“瞬间”的数值¹,²。
MAX11040K能够为设计人员提供SAR架构所不具备的诸多功能和特性,包括:1ksps采样率下高达117dB的动态范围; 积分非线性和微分非线性(INL、DNL)也远远优于SAR ADC; 独特的采样相位(采样点)调节能够从内部补偿外部电路(驱动器、变压器、输入滤波器等)引入的相位偏移。
另外,MAX11040K集成一个数字低通滤波器,处理每个调制器产生的数据流,得到无噪声、高分辨率的数据输出。 该低通滤波器具有复杂的频率响应函数,具体取决于可编程输出数据率。 输入端的阻/容(RC)滤波器结合MAX11040K的数字低通滤波器,大大降低了MAX11040K输入信号通道抗混叠滤波器的设计难度,甚至可以完全省去抗混叠滤波器。 表1列举了MAX11040K的部分特性,关于MAX11040K数字低通滤波器或表中列出的特性指标的详细信息,请参考器件数据资料。
部分 | 渠道 | 输入范围(VP_P) | 分辨率(位) | 速度(KSPS,最大值) | SINAD (1KSPS) (dB) | 输入阻抗 |
MAX11040K | 4 | ±2.2 | 24 | 64 | 117 | 高,(约130kΩ) |
电力线应用对ADC性能的要求
电力线监控应用中,CT (电流)互感器和PT (电压)互感器输出范围的典型值为:±10V或±5V峰峰值(VP-P)。 而MAX11040K的输入量程为±2.2VP-P,低于CT和PT互感器的典型输出。 不过,可以利用一个简单的低成本方案将±5V或±10V互感器输出调整到MAX11040K较低的输入量程以内,电路如图2所示。
连接到通道1的电路代表一个单端设计,这种配置下,变压器的一端接地,通过一个简单的电阻分压器和电容完成信号调理。
对于共模噪声(该噪声在ADC的两个输入端具有相同幅度)比较严重的应用场合,推荐采用图中通道4所示差分连接电路。 利用MAX11040K的真差分输入大大降低共模噪声的影响。
图2. MAX11040K在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。 通道4接口电路采用差分设计,通道1采用单端设计。
PT和CT测量变压器相当于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量级)。 为方便计算,以下示例中假设:变压器相当于一个有效输出电阻RTR = 50Ω的电压源; 为便于演示,变压器可以由一个50Ω输出阻抗的低失真函数发生器代替,如图3所示。 MAX11040K的输入阻抗与时钟速率、ADC输入电容有关。 连接适当的旁路电容C3,设定XIN时钟频率 = 24.576MHz,则得到输入阻抗RIN等于130kΩ ±15%,误差取决于内部输入电容的波动。
R1、R2组成的电阻分压网络将±10V或±5V输入信号转换成ADC要求的±2.2V满量程范围(FSR)。 为确保该电路工作正常,需要优化R1和R2电阻值,以及C1、C2和C3电容的选择,以满足±10V或±5V输入的要求。 电阻R1和R2必须有足够高的阻抗,避免CT和PT变压器输出过载。 同时,R2阻值还要足够小,以避免影响ADC的输入阻抗(R2 << R在)。
对于单端设计,图2中MAX11040K通道1的输入电压VIN(f),可以利用式1计算:
式中:
VTR是CT和PT变压器的输出电压。
RTR是变压器的等效阻抗。
R1、R2构成电阻分压网络。
RIN是MAX11040K的输入阻抗。
R2llRIN是R2和RIN的并联阻抗。
C3为输入旁路电容。
f是输入信号频率。
VIN(f)是MAX11040K的输入电压。
可以利用类似方法进行差分输入设计。
为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。 电容应选取高精度陶瓷电容或薄膜电容。 最好选择信誉较好的供应商购买这些元件,例如Panasonic、Rohm、Vishay、Kemet和AVX®等。®®®®
MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。
图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。 测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。
函数发生器产生的±5V信号连接到MAX11040K的通道2,而另一函数发生器产生的±10V信号连接到MAX11040K的输入通道1。 电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。
电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。 该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040K。 有关精度指标的详细信息,请参考MAX11040K数据资料。
VTR ±VP-P | RTR (Ω) | R1 (Ω) | R2 (Ω) | RIN (Ω) | C3 (µF) | f (Hz) | VIN ±VP-P | VADC (VRMS) | Calibration Factor-KCAL | Calibration Factor Error (%) |
---|---|---|---|---|---|---|---|---|---|---|
Calculations for nominal VTR and standard components (nominal) values | ||||||||||
10 | 50 | 3320 | 909 | 130000 | 0.1 | 50 | 2.11268 | 1.4939 | 3.73301 | 0.07 |
-80 | 68.32 | 67.92 | 67.52 | 67.12 | 66.72 | 66.31 | 65.91 | 65.51 | 65.1 | 64.7 |
5 | 50 | 2490 | 1820 | 130000 | 0.1/td> | 50 | 2.07026 | 1.46395 | 2.41516 | 0.99 |
Measured values for VTR, VIN, VINRMS with real components values and tolerances used in the experiment | ||||||||||
9.863 | 50 ± 10% | 3320 ± 1% | 909 ± 1% | 130000 ± 15% | 0.1 ± 10% | 50 | 2.09872 | 1.483899 | 4.699912 | 0 |
0 | 50 ± 10% | 2490 ± 1% | 1820 ± 1% | 130000 ± 15% | 0.1 ± 10% | 50 | 0 | 0.00048 | NA | NA |
表2列出的计算值均来自式1的计算结果和图3定义的精确测量。 表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。 表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的K卡尔系数,计算公式如下:
校准系数K卡尔按照式2计算:
KCAL = VTRMAX/(VADCMAX - VADC0) (式2)
式中:
VTRMAX是输入最大值,分别代表±5V或±10V输入信号。
VADCMAX是测量、处理后的ADC值,MAX11040EVKIT设置与图3相同,输入信号设置为VTRMAX。
VADC0是测量、处理后的ADC值,MAX11040EVKIT设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。
KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。
KCAL误差计算显示只基于标称值的KCAL“理论值”可能与基于实际测量值计算的K卡尔之间存在1%左右的误差。
所以,只是依靠理论计算还不足以支持实际要求; 如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。
表3所示结果验证了½ FSR输入信号的测量。 利用高精度HP3458A万用表测量数据,利用式2中的校准系数K卡尔得到ADC测量值和计算值。
Generator | Generator | MAX11040K | Calculation | VERR | Requirements |
Nominal Signal (1/2 FSR) | VTR_M - signal measured by HP3458A | VIN Measured by ADC | VTR_C = VIN × KCAL | (VTR_M - VTR_C) × (100/VTR_C) | IEC 62053 |
(VP-P) | (VRMS) | (VRMS) | (VRMS) | (%) | (%) |
Channel 1: ±5.000 | 3.4892 | 0.74259 | 3.490126 | -0.026544 | 0.2 |
Channel 2: ±2.500 | 1.7471 | 0.7307 | 1.747384 | -0.016265 | 0.2 |
表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040K测量值和KCAL处理、计算得到的数值。
结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。
图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。 此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。
测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。
结论
MAX11040K等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。 这些新型ADC设计能够提供高达117dB的动态范围,有效改善积分非线性和微分非线性,采样速率高达64ksps。 选择适当的信号调理电路,MAX11040K能够满足甚至优于高级“智能”电网监控系统的指标要求¹。
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !