光学液体分析原型制作平台为普遍检测指明了道路

描述

Sydney WellsScott Hunt

实时监控环境对于改善全球可持续发展至关重要。能够快速分析样本,并确认问题,是快速解决问题,尽可能减少对生态系统影响的关键。这种无处不在的实时传感应用改变了对液体传感器的需求,要求尺寸更小、更可靠、功耗更低,同时仍然提供高质量结果。随着行业不断发展,需要采用便携式检测智能平台。这些平台需要高度通用,能够满足从环境水域到过程控制等各种应用的不同需求。本文将介绍一种便携式实时检测解决方案和原型制作平台,用于快速实施液体检测。

一种常见的液体分析技术

测量样品中未知参数的浓度,如pH值、荧光或浊度的目的,可以有多种方法来测量液体实现。一种常见的方法是通过光学技术评估液体,因为它具有非介入性,可提供稳定准确的结果。精密光学液体测量需要电子、光学和化学多领域知识。简单地说,进行分析时,首先将样品暴露在光源(如LED)下。与样品相互作用后,产生的光由光电二极管处理。将测得的响应结果绘制出来,与一组已知浓度的标准样品的测量响应结果相对照。这就是所谓的校准曲线。利用校准曲线,可以确定未知值。这就是分析测量的一般实验室方法,但为了满足普遍的检测需求,必须进行调整以适应不同的分析物和测量技术,以及适合小尺寸应用,所有这些因素都增加了设计和评估的复杂程度。

AFE

图1.吸光度校准曲线示例。

用于实施快速液体测量的模块化ADI解决方案

ADPD4101 是一个光学模拟前端(AFE),能够驱动LED,并同步接收和处理来自光电二极管的信号,以进行高度精准的光学测量。ADPD4101是高度可配置的,具有高达100 dB的高光学信噪比和片上同步检测方法提供的高环境光抑制,使其在许多情况下能够不配备光学黑色遮罩直接使用。

CN0503 参考设计旨在使用ADPD4101快速制作液体分析测量原型。CN0503采用ADPD4101作为核心产品,但增加了四条模块化光路,以及测量固件和应用软件,用于实施液体分析。CN0503直接连接至ADICUP3029板,用于管理测量例程和数据流。ADICUP3029板可以直接连接至笔记本电脑,以查看评估GUI中的结果。CN0503可以测量荧光、浊度、吸光度和色度。样品在比色皿中制备,并放置在3D打印的比色皿支架中,支架中装有光学元件,包括一个透镜和分束器。将比色皿支架插入适当的光路,以进行即插即用测量。此外,LED和光电二极管卡可以切换,以实现更大程度的自定义。

为了使用CN0503演示创建校准曲线和测量未知数,将显示pH值、浊度和荧光的测量值。使用评估GUI进行测量,以创建校准曲线。计算噪声值和检测限制(LOD),以确定CN0503可以检测的每个样本的最低浓度。

AFE

图2.CN0503评估板。

利用吸光度测量pH值

吸光度背景

吸光度是指根据在特定波长下光的吸收量来确定溶液中已知溶质的浓度。根据比尔-朗伯吸收定律,浓度与吸光度成正比。许多无色分析物可以通过加入变色试剂来测定。本示例将演示测量pH值,从水质检测到废水处理,pH值是许多行业中常见的测量参数之一。吸光度测量可用于许多其他参数,包括溶解氧/生物需氧量、硝酸盐、氨和氯。

光学元件

测量吸光度的光路配置如图3所示。使用CN0503可以在任何光路(1到4)进行吸光度测量。入射光束指向分束器,由参考光电二极管在分束器中对光束强度进行采样。剩余的光功率直接穿过样本。采样光与参考光的比值消除了LED光源的变化和噪声,同步脉冲和接收窗口可提供环境光抑制。

AFE

图3.用于测量吸光度的光路。

实验设备

CN0503评估板

EVAL-ADICUP3029 评估板

API pH测试和调节器套件

pH标准品

AFE

图4.使用CN0503进行pH值测量。

在本实验中,我们将显色剂(溴百里酚蓝)加入不同pH值的溶液中。将溶液倒入比色皿中,在430 nm和615 nm两种不同波长下进行测试,其中指示剂显示了吸光的变化和pH。使用CN0503能轻松实施这种测量;可将两种不同波长的LED卡插入光路2和光路3中。然后将比色皿支架移动到不同的路径进行不同的测量。

结果

使用CN0503评估GUI,将两条光路的测量结果轻松导出到Excel表中。得出的两种不同波长的校准曲线如图5和图6所示。

AFE

图6.615 nm下的pH吸光度校准曲线。

在每种情况下,绘出pH值与吸光度的关系图,以创建校准曲线。然后使用添加趋势线选项来得到曲线的方程。然后使用这些方程来确定未知样本的浓度。传感器输出是x变量,得到的y值是pH值。这项实验可以手动完成;但是,也可以使用CN0503来进行这项实验。该固件采用两个五阶多项式INS1和INS2。将多项式保存之后,就可以选择INS1或INS2模式,这样会直接以所需的单位报告测量结果——在本例中是pH值。因此可以非常简单快速地获取未知样本的结果。

为了获取噪声值,在每个波长选择两个不同的数据点:一个较低的pH值和一个较高的pH值。由于在这种情况下,曲线拟合不呈线性,所以使用了两个点。对每个点重复实施测量会得出标准偏差,即表1中所示的噪声值,该值描述了测量精度,排除了样本制备期间的差异。

 

  6.1 pH样本 7.5 pH样本
  430 nm 615 nm 430 nm 615 nm
RMS噪声值(pH) 0.002098 0.000183 8.18994 × 10–7 0.000165

 

LOD通常是通过测量低浓度的噪声,并乘以3得到99.7%的置信区间来确定的。由于pH值为对数标度,故选取pH值7作为检测LOD的数值,如表2所示。

 

  7 pH样本
 
  430 nm 615 nm
检测限值(pH) 0.001099 0.001456

 

测量浊度

浊度背景

液体样本的浊度测量利用了液体中悬浮颗粒的光散射特性。最终,它是测量液体的相对透明度。散射光的数量和散射角度的不同取决于颗粒的大小、浓度和入射光的波长。很多行业都会进行浊度测量,包括水质检测和生命科学领域。除一般浊度外,还可以使用CN0503通过测量光密度来测定藻类的生长情况。

光学元件

图7显示了使用90°或180°检测器进行浊度测量的光路。使用CN0503,因为需要使用90°检测器只能在光路1或4进行浊度测量。我们可以使用多种测量配置和浊度标准。本示例演示了EPA Method 180.1的修改版本,使用比浊法浊度单位(NTU)进行校准和报告。

AFE

图7.浊度测量光路。

实验设备

CN0503评估板

EVAL-ADICUP3029评估板

Hanna Instruments® 浊度标准校准装置

本实验采用光路4,插入530 nm LED板进行测试。

AFE

图8.浊度校准标准。

结果

使用CN0503评估GUI,将测量结果导出到Excel表格中。得出的校准曲线如图9所示。

AFE

图9.浊度校准曲线。

因为90°散射测量对高浑浊度的响应较差,所以响应曲线分为两个部分。一部分代表低浊度(0 NTU ~ 100 NTU),另一部分代表高浊度(100 NTU ~ 750 NTU)。然后对每个部分进行两次线性拟合。即使现在有两个方程值,仍然可以使用CN0503来快速显示得出的NTU值。这是因为每个光路都可以在INS1和INS2中存储自己的方程值。注意,INS1和INS2是相互依赖的。第一个方程INS1的结果是第二个方程INS2的输入变量。存储方程值之后,INS1可用于测量低浊度样本,INS2可用于测量高浊度样本。

为了得出噪声值,我们选择一个数据点来获取重复测量的标准偏差。标准偏差就是噪声值。因为方程拟合呈线性,所以在范围底部附近选取一个数据点。

 

12 NTU
RMS噪声值(NTU)
0.282474

 

为了确定LOD,我们测量空白或低浓度样本的噪声值,然后乘以3表示99.7%的置信区间。

 

空白样本
检测限值(NTU)
0.69204

 

用菠菜溶液测量荧光

荧光背景

当光照射含有荧光分子的样本时,电子会进入更高能量状态,然后在发出更长波长的光之前失去一部分能量。荧光发射具有化学特异性,可用于确认介质中特定分子的存在和数量。在本示例中,我们使用菠菜叶来演示荧光叶绿素。在许多应用中,在生物测定、溶解氧、化学需氧量以及检测牛奶巴氏灭菌法是否成功时常用到荧光测量。

光学元件

测量荧光的光路配置如图10所示。使用CN0503,只能在光路1或4进行荧光测量,因为需要使用90°检测器。通常,将荧光检测器置于入射光90°的位置,使用单色或长通滤光片来增加激发光和发射光之间的隔离。荧光是一种非常灵敏的低电平测量,容易受到干扰,因此采用参考检测器和同步检测方法来减少误差源。

AFE

图10.荧光测量光路。

实验设备

CN0503评估板

EVAL-ADICUP3029评估板

菠菜溶液

在本实验中,将菠菜叶和水混合,制成菠菜溶液。过滤之后,作为原液保存。然后将原液稀释,得到菠菜溶液百分比含量不同的样本。将它们作为标准,通过荧光绘制菠菜溶液的百分比曲线。使用光路1、365 nm LED卡和长通滤光片进行测量。

AFE

图11.用菠菜制成的叶绿素样本。

结果

菠菜百分比含量溶液的校准曲线如图12所示。

AFE

图12.菠菜百分比含量溶液的校准曲线。

可以存储该校准曲线的趋势线方程,以便CN0503直接以百分比形式报告结果。

为了得出噪声值,我们选择了两个不同的数据点:一个靠近范围底部,另一个靠近顶部,因为曲线拟合不呈线性。通过对每个点实施反复测量得出标准偏差,也就是噪声,如表5所示。

 

  7.5%菠菜样本 20%菠菜样本
RMS噪声值(菠菜含量%) 0.0616 0.1158

 

为了确定LOD,我们测量空白或低浓度样本的噪声值,然后乘以3表示99.7%的置信区间。

 

空白样本
检测限值(菠菜含量%)
0.1621

 

结论

制作复杂光学液体分析测量的原型是一个挑战,需要仔细考虑化学、光学和电子如何相互作用,以得出准确的结果。集成式AFE产品(例如ADPD4101)为在更小的空间内实现更高性能的光学液体检测铺平了道路。CN0503基于ADPD4101构建,包括光学设计、固件和软件,是一个易于使用且高度可定制的快速原型制作平台,能够对吸光度、色度、浊度和荧光等液体参数进行准确的光学测量。

审核编辑:郭婷

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分