触控感测
密码的使用在我们的生活中无处不在:手机解锁、网站用户登录、网上/移动支付。安全起见,人们往往在不同类型的账户设置不同的密码,比如手机银行的登录密码和支付密码会不一样,并且还需要定期更换密码。这样一来,带来的问题就是时间一久,密码搞混淆了,忘记了,然后再进入一套“找回密码”的流程……
其实,我们的指纹就是独一无二,且较难复制,一般情况下别人也无法窃取的密码。
指纹识别技术概念及由来
指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。由于指纹具有终身不变性、唯一性和方便性,已几乎成为生物特征识别的代名词。
指纹识别是一门古老的学科,1788年Mayer首次提出没有两个人的指纹完全相同,1823年Purkinie首次把指纹纹形分成9类,1889年Henry提出了指纹细节特征识别理论,奠定了现代指纹学的基础。
但采用人工比对的方法,效率低、速度慢。20世纪60年代,开始用计算机图像处理和模式识别方法进行指纹分析,这就是自动指纹识别系统。20世纪70年代末80年代初,刑事侦察用自动指纹识别系统投入实际运用。20世纪90年代,AFIS进入民用,称为民用自动指纹识别系统。
每个人包括指纹在内的皮肤纹路在图案、断点和交叉点上各不相同,呈现惟一性且终生不变。据此,我们就可以把一个人同他的指纹对应起来,通过将他的指纹和预先保存的指纹数据进行比较,就可以验证它的真实身份,这就是指纹识别技术。
指纹识别主要根据人体指纹的纹路、细节特征等信息对操作或被操作者进行身份鉴定,得益于现代电子集成制造技术和快速而可靠的算法研究,已经开始走入我们的日常生活,成为目前生物检测学中研究最深入、应用最广泛、发展最成熟的技术。
2013年之前,指纹识别传感器的主要应用还是在工业和安防领域。1998年西门子展示了集成指纹识别功能的手机后,指纹识别沉寂了十几年。2013年苹果公司发布了采用指纹识别传感器的iPhone 5S,由此引爆了指纹识别传感器市场,三年间市场规模从几乎为零飙升到几十亿美元。起初,指纹识别传感器用于手机解锁和信息保护。然而,现在指纹识别传感器越来越多地应用于在线认证和移动支付等安全功能。
指纹识别技术的原理
尽管指纹识别技术已经进入了民用领域,但是其工作原理其实还是比较复杂的。与人工处理不同,生物识别技术公司不直接存储指纹的图像(有关法律认为,指纹图像属于个人隐私,因此不能直接存储指纹图像)。多年来,各生物识别技术公司及其研究机构研究了许多指纹识别算法。但各种识别算法最终都归结为在指纹图像上找到并比对指纹的特征。这就是指纹识别技术的基本原理,即采集指纹图像并进行比对指纹特征。
指纹的特征
从普遍意义上来讲,可以定义指纹的两类特征来进行指纹的验证:总体特征和局部特征。
总体特征
总体特征是指那些用人眼直接就可以观察到的特征。它包括:
1、基本纹型:常见的指纹图案有环型、弓型、螺旋型,其他的指纹图案都基于这三种基本图案,只是一个粗略的分类,仅仅依靠图案类型来分辨指纹是远远不够的,但通过分类可以更加便利于在大数据库中搜寻到指纹。
2、模式区:模式区是包含了纹型特征的区域,即从模式区就能够分辨出指纹是属于那一种类型的。
3、核心点:核心点位于指纹纹路的渐进中心,它用于读取指纹和比对指纹时的参考点。
4、三角点:三角点位于从核心点开始的第一个分叉点或者断点、或者两条纹路会聚处、孤立点、折转处,或者指向这些奇异点。三角点提供了指纹纹路的计数和跟踪的开始之处。
5、式样线:式样线是在指纹包围模式区的纹路线开始平行的地方所出现的交叉纹路,式样线通常很短就中断了,但它的外侧线开始连续延伸。
6、纹数:纹数是指模式区内指纹纹路的数量。在计算指纹的纹数时,一般先连接核心点和三角点,这条连线与指纹纹路相交的数量即可认为是指纹的纹数。
局部特征
局部特征是指指纹上的节点。两枚指纹经常会具有相同的总体特征,但它们的局部特征却不可能完全相同。局部特征点有如下的类型:
1、节点:指纹纹路并不是连续、平滑笔直的,而是经常出现中断、分叉或弯折的。这些断点、分叉点和转折点就称为“节点”。就是这些节点提供了指纹唯一性的确认信息。
2、端点:一条纹线终止的地方;
3、分叉点:一条纹线分裂成两条的地方;
4、中心点:指纹的几何中心,这是纹线产生最大曲率的地方;
5、三角点:三种不同方向的纹线汇聚的地方;
6、交叉:两条纹线产生交叉的地方;
7、小岛:一条很短小的纹线;
8、汗腺孔:脊线上的小孔,系汗腺。
以上这些特征被用来区分不同的指纹。其中:
1、端点和分叉点是最为常用的特征。通常的算法都要记录它们的位置和方向。
2、中心点和三角点在刑侦系统中普遍使用,而在民用系统中并不常用。因为这些应用中所使用的采集器往往面积较小,较难完整地采集到中心点和三角点。
3、交叉和小岛由于计算上的困难,在实际的系统中往往不予采用。
4、有人曾提出用汗腺孔来进行指纹识别,但这种方法要求指纹采集设备要具有非常高的分辨率。所以在实际的系统中没有采用。
指纹识别的过程
指纹识别由两个过程组成,即登记过程和识别过程。其原理如图所示:
在登记过程中,用户需要先采集指纹,然后计算机系统将自动进行特征提取,提取后的特征将作为模板保存在数据库或其他指定的地方。在识别或验证阶段,用户首先要采集指纹,然后经系统自动进行指纹库模板比对,然后给出比对结果。
在很多场合,用户可能还要输入其他的一些辅助信息,以帮助系统进行匹配,如帐号、用户名等。此过程是一个通用的过程,对所有的生物特征识别技术都适用。
目前指纹识别技术的主要种类
目前,市场中应用的指纹图像的获取技术主要有4种类型:光学扫描设备、温差感应式指纹传感器、半导体指纹传感器、超声波指纹扫描。
一、光学识别技术
借助光学技术采集指纹是历史最久远、使用最广泛的技术。将手指放在光学镜片上,手指在内置光源照射下,用棱镜将其投射在电荷耦合器件(CCD)上,进而形成脊线(指纹图像中具有一定宽度和走向的纹线)呈黑色、谷线(纹线之间的凹陷部分)呈白色的数字化的、可被指纹设备算法处理的多灰度指纹图像。
光学的指纹采集技术有明显的优点:它已经过较长时间的应用考验,一定程度上适应温度的变异,可达到500DPI的较高分辨率等,最主要是价格低廉。
也有明显的缺点:由于要求足够长的光程,因此要求足够大的尺寸,而且过分干燥和过分油腻的手指也将使光学指纹产品的效果变坏。
光学指纹传感局限性体现于潜在指印方面(潜在指印是手指在台板上按完后留下的),不但会降低指纹图像的质量,严重时还可能导致2个指印重叠,显然,难以满足实际应用需要。此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。但是具有无法进行活体指纹鉴别、对干湿手指的适用性差等缺点。
光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做一个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。
二、温差感应式识别技术
温差感应式识别技术是基于温度感应的原理而制成的,每个像素都相当于一个微型化的电荷传感器,用来感应手指与芯片映像区域之间某点的温度差,产生一个代表图像信息的电信号。
它的优点是可在0.1s内获取指纹图像,而且传感器体积和面积最小,即目前通常所说的滑动式指纹识别仪就是采用该技术。
缺点是:受制于温度局限,时间一长,手指和芯片就处于相同的温度了。
三、半导体硅感技术(电容式识别技术)
20世纪90年代后期,基于半导体硅电容效应的技术趋于成熟。硅传感器成为电容的一个极板,手指则是另一极板,利用手指纹线的嵴和峪相对于平滑的硅传感器之间的电容差,形成8bit的灰度图像。
电容传感器发出电子信号,电子信号将穿过手指的表面和死性皮肤层,直达手指皮肤的活体层(真皮层),直接读取指纹图案。由于深入真皮层,传感器能够捕获更多真实数据,不易受手指表面尘污的影响,提高辨识准确率,有效防止辨识错误。
半导体指纹传感器包括半导体压感式传感器、半导体温度感应传感器等,其中,应用最广泛的是半导体电容式指纹传感器。
半导体电容传感器根据指纹的嵴和峪与半导体电容感应颗粒形成的电容值大小不同,来判断什么位置是嵴什么位置是峪。其工作过程是通过对每个像素点上的电容感应颗粒预先充电到某一参考电压。
当手指接触到半导体电容指纹表现上时,因为嵴是凸起、峪是凹下,根据电容值与距离的关系,会在嵴和峪的地方形成不同的电容值。然后利用放电电流进行放电。因为嵴和峪对应的电容值不同,所以其放电的速度也不同。
嵴下的像素(电容量高)放电较慢,而处于峪下的像素(电容量低)放电较快。根据放电率的不同,可以探测到嵴和峪的位置,从而形成指纹图像数据。
与光学设备多采用人工调整改善图像质量不同,电容传感器采用自动控制技术调节指纹图像像素以及指纹局部范围敏感程度,在不同环境下结合反馈信息生成高质量图像。由于提供了局部调整能力,即使对比度差的图像(如手指压得较轻的区域)也能被有效检测到,并在捕捉瞬间为这些像素提高灵敏度,生成高质量指纹图像。
半导体电容指纹传感器优点为图像质量较好、一般无畸变、尺寸较小、易集成于各种设备。其发出的电子信号将穿过手指的表面和死性皮肤层,达到手指皮肤的活体层(真皮层),直接读取指纹图案,从而大大提高了系统的安全性。
半导体硅感技术最重要的优点是能够达到活体指纹识别。还可以在较小的表面上获得比光学技术更好的图像质量,在1cm×1.5cm的表面上获得200-300线的分辨率(较小的表面也导致成本的下降和能被集成到更小的设备中)。体积小、成本低,成像精度高,而且耗电量很小,因此非常适合在安全防范和高档消费类电子产品中使用,被称为光学以后的第二代指纹识别技术。
四、超声波识别技术
超声波指纹采集是一种新型技术,其原理是利用超声波具有穿透材料的能力,且随材料的不同产生大小不同的回波(超声波到达不同材质表面时,被吸收、穿透与反射的程度不同)。因此,利用皮肤与空气对于声波阻抗的差异,就可以区分指纹嵴与峪所在的位置。
超声波技术所使用的超声波频率为1×104Hz-1×109Hz,能量被控制在对人体无损的程度(与医学诊断的强度相同)。超声波技术产品能够达到最好的精度,它对手指和平面的清洁程度要求较低,但其采集时间会明显地长于前述两类产品,而且价格昂贵,也并不能做到活体指纹识别,所以目前使用稀少。
微光学式指纹识别技术
当前无论是的主流——电容式指纹识别传感器,还是新秀——超声波式指纹识别传感器,都需要额外的指纹传感器,只是前者需要在屏幕上开孔,后者可以隐藏在屏幕下面而已。
2017年,苹果公司和汇顶科技推出了基于微型光学感测技术的指纹识别技术,这种技术巧妙地将显示屏和指纹传感器的融合于一体,支持全屏幕多处进行指纹识别。
指纹识别传感器的工作原理“始”于光学式,“盛”于电容式,“延续”于超声波式和微型光学式。转了一圈,现在又回到了光学感测的路子上来了,不同的是,如今的微型光学感测技术先进性足以引起智能手机的全“面”革新。
微型光学式指纹传感器的原理是什么?汇顶科技和苹果采用的技术是有所差异的,汇顶科技暂未透露出细节,不过我们可以就苹果采用的MicroLED技术来了解一番。
2012年前MicroLED技术还停留在实验室研发阶段。随着苹果公司于2014年5月收购拥有MicroLED多项专利技术的LuxVue公司,市场对该项技术的关注度达到了空前的高度。
MicroLED技术,即LED微缩化和矩阵化技术。指的是在一个芯片上集成的高密度微小尺寸的LED阵列,显示屏每一个像素可定址、单独驱动点亮,将像素点距离从毫米级降低至微米级。
MicroLED display,是将LED结构设计进行薄膜化、微小化、阵列化,其尺寸仅在1~10μm等级左右,再将MicroLED批量式转移至电路基板上,其基板可为硬性、软性之透明、不透明基板上;再利用物理沉积制程完成保护层与上电极,即可进行上基板的封装,完成结构简单的MicroLED显示。
根据美国专利和商标局于在2017年2月14日公布苹果公司美国专利号为9570002“集成红外二极管的交互式显示面板”,展示了采用MicroLED传感技术的触摸显示屏以及其如何实现指纹识别技术功能。
具体而讲,单独的红外发射管与传感二极管连接作为驱动,选择电路用于创建子像素电路。由于其体积小,这些红外二极管可以与RGB LED嵌入显示基板,或者安装在微型芯片上后再集成到所述基板。
在进行指纹识别操作时,集成有交互像素(所谓的“交互像素”,这种子像素排列可以将红、绿、蓝、红外发光二极管、红外探测器,以及其它颜色的阵列集成在分辨率非常高的面板)的屏幕的某一特定区域或者某几行扫描到用户的指纹信息。
当该距离达到足以感应到的距离,将生成位图并通知系统近似定位数据。在某些情况下,位图包括入射光强度信息,允许对对象及其表面进行深层分析。例如,通过检查位图的暗点和亮点,样本系统可以检测用户指纹中相应的脊线和皱褶。从而实现指纹识别的功能。
指纹识别技术是生物识别技术的主流技术,是身份认证的主流技术,它在各行各业得到了广泛的应用。现在用指纹功能的设备,必须有一个物理键让你扫描一个指纹,但随着触控和显示芯片的发展,高度集成化,未来的发展趋势是任何位置,我们可以在屏幕上完成的指纹识别。嵌入式指纹识别出现在核心,所以任何限制不影响设备制造商的工业设计的设备。
随着指纹识别和触摸显示技术的融合越来越成熟,它也将越来越广泛,例如,快速付款、识别、个性化偏好定制等,很可能将密码用指纹识别技术所取代。
编辑:黄飞
全部0条评论
快来发表一下你的评论吧 !