基于物联网的远程温湿度监测系统(2)编写 DHT11 驱动

描述

 

前言

本项目主要通过使用STM32F103C8T6作为主控MCU,ESP8266作为数据透传模块,接入机智云AIoT云平台,通过在线智能产品,实现了远程联网、温湿度监测、APP控制等功能。


 

在上文中,主要介绍了“创建云端产品,烧录Gagent”,以便让设备能够联网,当然其中也备注了ESP8266烧写Gagent固件时的注意事项,说明定义数据点的作用。


 

在本文中,从原理开始讲解,阐述DHT11驱动的编写。


 

进入正文

1、DHT11 简要介绍

DHT11 器件采用简化的单总线通信,DATA 引脚用于微处理器与 DHT11 之间的通讯和同步,一次传送 40 位数据,高位先出。

物联网

 

 

举例:

物联网

 

2、时序分析(附代码)

用户主机(MCU)发送一次开始信号后,DHT11 从低功耗模式转换到高速模式,待主机开始信号结束后,DHT11 发送响应信号,送出 40bit 的数据,信号发送如图所示。

物联网

注意: 主机(MCU)从 DHT11 读取的温湿度数据总是前一次的测量值。

 

总线空闲:

DHT11 的 DATA 数据线由上拉电阻拉高一直保持高电平,此时 DHT11 的DATA 引脚处于输入状态,时刻检测外部信号。

 

MCU 发出请求信号:

MCU I/O 设置为输出同时输出低电平,且低电平保持时间不能小于 18ms,然后MCU I/O设置为输入状态。由于上拉电阻,MCU I/O 即 DHT11 的 DATA 数据线也随之变高,之后等待 DHT11 作出回答信号。

 

DHT11 发出应答信号:

当 DHT11 的 DATA 引脚检测到外部信号有低电平时,等待外部信号低电平结束,延迟后 DHT11 的 DATA引脚处于输出状态,输出 80us的低电平作为应答信号,紧接着输出 80us 的高电平通知 MCU 准备接收数据,MCU I/O 此时处于输入状态,检测到 DHT11 回应信号后,等待 80us 的高电平后的数据接收。

物联网

 

MCU 接收 40 位数据

由 DHT11 的 DATA 引脚输出 40 位数据,MCU 根据 I/O 电平的变化来判断是 “0” 还是 “1” 。

 

位数据 “0” 的格式为:

50us 的低电平和 26-28us的高电平。

物联网

 

位数据 “1” 的格式为:

50us 的低电平加 70us 的高电平。

物联网

 

 

DHT11 发出结束信号

DHT11 的 DATA 引脚输出 40 位数据后,继续输出低电平 50us 后转为输入状态,由于上拉电阻存在,变为高电平。

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
// 本驱动采用 HAL 库,us 级延时使用通用定时器实现,对 IO 引脚的状态的改变采用位操作以及直接寄存器操作

// 复位DHT11
void DHT11_Rst(void)
{                 
    DHT11_IO_OUT();   //设置为输出
  DHT11_DQ_OUT = 0;   //拉低
  HAL_Delay_ms(20);   //拉低至少18ms
  DHT11_DQ_OUT = 1;   //拉高 
  HAL_Delay_us(30);   //主机拉高20~40us
}

//等待DHT11的回应
//返回1:未检测到DHT11的存在
//返回0:存在
uint8_t DHT11_Check(void)      
{   
uint8_t retry = 0;
  DHT11_IO_IN();      //设置为输入   
while(DHT11_DQ_IN && retry < 100)  //DHT11会拉低40~80us
  {
    retry++;
    HAL_Delay_us(1);
  }   
if(retry >= 100)
return 1;
else
    retry = 0;

while(!DHT11_DQ_IN && retry < 100)  //DHT11拉低后会再次拉高40~80us
  {
    retry++;
    HAL_Delay_us(1);
  }
if(retry >= 100)
return 1;      
return 0;
}

//从DHT11读取一个位
//返回值:1/0
uint8_t DHT11_Read_Bit(void)        
{
uint8_t retry = 0;
while(DHT11_DQ_IN && retry < 100)//等待变为低电平
  {
    retry++;
    HAL_Delay_us(1);
  }
  retry = 0;
while(!DHT11_DQ_IN && retry < 100)//等待变高电平
  {
    retry++;
    HAL_Delay_us(1);
  }
  delay_us(40);//等待40us
if(DHT11_DQ_IN)
return 1;
else
return 0;       
}

//从DHT11读取一个字节
//返回值:读到的数据
uint8_t DHT11_Read_Byte(void)    
{        
uint8_t i,dat;
  dat = 0;
for (i=0;i<8;i++) 
  {
      dat <<= 1; 
      dat |= DHT11_Read_Bit();
  }                
return dat;
}

//从DHT11读取一次数据
//temp0~50°)
//humi20%~90%)
//返回值:0,正常;1,读取失败;2,校验和错误
uint8_t DHT11_Read_Data(uint8_t *temp, uint8_t *humi)    
{        
uint8_t buf[5];
uint8_t i;
  DHT11_Rst();
if(DHT11_Check() == 0)
  {
for(i = 0; i < 5; i++)   //读取40位数据
    {
      buf[i] = DHT11_Read_Byte();
    }
if((buf[0] + buf[1] + buf[2] + buf[3]) == buf[4])
    {
      *humi = buf[0];  
      *temp = buf[2];
    }
else
return 2;  // 校验和错误
  }
else
return 1;
return 0;      
}

//初始化DHT11的 IO口, 同时检测DHT11的存在
//返回1:不存在
//返回0:存在        
uint8_t DHT11_Init(void)
{
  DHT11_GPIO_Init();

  DHT11_Rst();
return DHT11_Check();
}

 

3、使用串口观察数据

将 printf 函数重定向至与 PC 相连的串口上。由于重定向相关函数已经包含在机智云生成的代码中(gizwits_product.c),我们直接使用 printf 进行数据打印即可。

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/**
  * @brief  Retargets the C library printf function to the USART.
  * @param  None
  * @retval None
  */
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART1 and Loop until the end of transmission */
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);

return ch;
}

 

以下为相关测试代码:

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
state = DHT11_Read_Data(&temperature, &humidity);
if(state == 2)
{
printf("the checksum is error\n");
}
else if(!state)
{
printf("temp = %d , humi = %d\n", temperature, humidity);
}
else
{
printf("DHT11 is not answer\n");
}

若采集到的数据没有问题,即可将机智云协议相关代码移植进工程中。

本文结束。
 


 

在下篇内容中,介绍结合STM32cubx实现机智云代码工程移植、采集数据上发、控制数据下拉、成品测试环节。

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分