7
#ifdef __GNUC__ //串口重定向
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{
err = R_SCI_UART_Write(&g_uart0_ctrl, (uint8_t *)&ch, 1);
if(FSP_SUCCESS != err) __BKPT();
while(uart_send_complete_flag == false){}
uart_send_complete_flag = false;
return ch;
}
int _write(int fd,char *pBuffer,int size)
{
for(int i=0;i;i++)>
18.工厂文件
打开hal_entry.c,可以看到在hal_entry函数内,注释着可以在这输入自己的代码。
19.占空比与频率计算
占空比=(t1-t0)/(t2-t0)
频率=(t2-t0)/时钟频率= =(t2-t0)/48M
20.回调函数tim_callback()
由于设置了上升沿和下降沿都会进入回调函数中,故需要判断引脚电平来判断是属于高电平还是低电平。
bsp_io_level_t p_port_value_port_213;
/*读取端口电平状态,如果是低电平则发生的是下降沿,高电平则是上升沿*/
R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_02_PIN_13, &p_port_value_port_213);
周期需要2个上升沿去判断,设定第一个上升沿time_flag由0变为1,则第二个上升沿则为time_flag由1变为0.
计算周期需要注意定时器周期计数器溢出,若存在time_flag= 0->1读取的计数值大于time_flag= 1->0读取的计数值,则一个周期为g_capture_num = current_period_counts + g_capture_num1 - g_capture_num0。
若没有溢出,则g_capture_num = g_capture_num1 - g_capture_num0。
频率则需要计算下降沿到time_flag=1的一个周期,在除以g_capture_num(48M)。
计算频率需要注意定时器周期计数器溢出,若存在time_flag= 0->1读取的计数值大于g_capture_duty_cycle_num0读取的计数值,则一个周期为g_capture_num = current_period_counts + g_capture_num1 - g_capture_num0。若没有溢出,则g_capture_duty_cycle_num = g_capture_duty_cycle_num0 - g_capture_num0。
21.代码
#include "hal_data.h"
#include
FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER
fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;//串口发送完毕标志位
volatile bool time_flag = 0;//上升沿标志位
volatile uint64_t g_capture_num =0;//两个上升沿之间的周期
volatile uint64_t g_capture_num0 =0;//第0个上升沿定时器计数值
volatile uint64_t g_capture_num1 =0;//第1个上升沿定时器计数值
volatile uint64_t g_capture_frequency = 0;//频率
volatile float g_capture_duty_cycle =0;//占空比
volatile int g_capture_duty_cycle_num =0;//+占空比周期
volatile uint64_t g_capture_duty_cycle_num0 =0;//下降沿定时器计数值
void user_uart_callback (uart_callback_args_t * p_args)
{
if(p_args->event == UART_EVENT_TX_COMPLETE)
{
uart_send_complete_flag = true;
}
}
#ifdef __GNUC__ //串口重定向
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{
err = R_SCI_UART_Write(&g_uart0_ctrl, (uint8_t *)&ch, 1);
if(FSP_SUCCESS != err) __BKPT();
while(uart_send_complete_flag == false){}
uart_send_complete_flag = false;
return ch;
}
int _write(int fd,char *pBuffer,int size)
{
for(int i=0;ievent) || (TIMER_EVENT_CAPTURE_B == p_args->event))
{
bsp_io_level_t p_port_value_port_213;
/*读取端口电平状态,如果是低电平则发生的是下降沿,高电平则是上升沿*/
R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_02_PIN_13, &p_port_value_port_213);
/* Get the current period setting. */
timer_info_t info;
(void) R_GPT_InfoGet(&g_timer0_ctrl, &info);
uint64_t frequency = info.clock_frequency;//定时器时钟频率
uint32_t current_period_counts = info.period_counts;//定时器周期
if(p_port_value_port_213==BSP_IO_LEVEL_HIGH)//上升沿
{
if(time_flag==0)
{
time_flag=1;
g_capture_num0=p_args->capture;
g_capture_duty_cycle_num=0;
}
else
{
time_flag=0;
g_capture_num1=p_args->capture;
if(g_capture_num1>=g_capture_num0)
g_capture_num=g_capture_num1-g_capture_num0;
else
g_capture_num=current_period_counts+g_capture_num1-g_capture_num0;
g_capture_frequency= frequency/g_capture_num;//计算频率
}
}
else
{
if(time_flag==1)
{
g_capture_duty_cycle_num0=p_args->capture;
if(g_capture_duty_cycle_num0>=g_capture_num0)
g_capture_duty_cycle_num=g_capture_duty_cycle_num0-g_capture_num0;
else
g_capture_duty_cycle_num=current_period_counts+g_capture_duty_cycle_num0-g_capture_num0;
g_capture_duty_cycle=(g_capture_duty_cycle_num*100/(float)g_capture_num);//占空比
}
}
}
}
void hal_entry(void)
{
/* TODO: add your own code here */
err = R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);
assert(FSP_SUCCESS == err);
/* Initializes the module. */
err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);
/* Handle any errors. This function should be defined by the user. */
assert(FSP_SUCCESS == err);
/* Start the timer. */
(void) R_GPT_Start(&g_timer0_ctrl);
/* Enable captures. Captured values arrive in the interrupt. */
(void) R_GPT_Enable(&g_timer0_ctrl);
/* Initializes the module. */
err = R_GPT_Open(&g_timer1_ctrl, &g_timer1_cfg);
/* Handle any errors. This function should be defined by the user. */
assert(FSP_SUCCESS == err);
R_BSP_SoftwareDelay (20, BSP_DELAY_UNITS_MILLISECONDS);
/* Start the timer. */
(void) R_GPT_Start(&g_timer1_ctrl);
R_BSP_SoftwareDelay (20, BSP_DELAY_UNITS_MILLISECONDS);
while(1)
{
printf("\nfrequency=%lld,duty cycle=%f",g_capture_frequency,g_capture_duty_cycle);
g_capture_num=0;
g_capture_duty_cycle=0;
R_BSP_SoftwareDelay (200, BSP_DELAY_UNITS_MILLISECONDS);
}
#if BSP_TZ_SECURE_BUILD
/* Enter non-secure code */
R_BSP_NonSecureEnter();
#endif
} ;i++)>
22.结果演示
频率1K 占空比80%
频率5K 占空比35%
23.视频教学
视频教学稍后会在B站官方账号更新,请留意B站视频更新~
原创:By RA_Billy Xiao
原文标题:瑞萨e2studio----定时器GPT配置输入捕获
文章出处:【微信公众号:RA生态工作室】欢迎添加关注!文章转载请注明出处。
全部0条评论
快来发表一下你的评论吧 !