关键词:胶粘剂(胶水,接着剤、粘接剂),胶接工艺,胶粘技术
引言:胶接是通过具有黏附能力的物质,把同种或不同种材料牢固地连接在起的方法。具有黏附能力的物质称为胶粘剂或黏合剂,被胶接的物体称为被粘物,胶粘剂和被黏物构成的组件称为胶接接头。其主要优点是操作简单、生产率高;工艺灵活、快速、简便;接头可靠、牢固、美观产品结构和加工工艺简单;省材、省力、成本低、变形小。容易实现修旧利废接技术可以有效地应用于不同种类的金属或非金属之间的联接等。胶水的固化方式,一般有以下几种:
半导体封装
一
定义
半导体封装是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片的过程。封装过程为:来自晶圆前道工艺的晶圆通过划片工艺后被切割为小的晶片(Die),然后将切割好的晶片用胶水贴装到相应的基板(引线框架)架的小岛上,再利用超细的金属(金锡铜铝)导线或者导电性树脂将晶片的接合焊盘(Bond Pad)连接到基板的相应引脚(Lead),并构成所要求的电路;然后再对独立的晶片用塑料外壳加以封装保护,塑封之后还要进行一系列操作,封装完成后进行成品测试,通常经过入检Incoming、测试Test和包装Packing等工序,最后入库出货。
半导体制造的工艺过程由晶圆制造(Wafer Fabr ication)、晶圆测试(wafer Probe/Sorting)、芯片封装(Assemble)、测试(Test)以及后期的成品(Finish Goods)入库所组成。半导体器件制作工艺分为前道和后道工序,晶圆制造和测试被称为前道(Front End)工序,而芯片的封装、测试及成品入库则被称为后道(Back End)工序,前道和后道一般在不同的工厂分开处理。前道工序是从整块硅圆片入手经多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体元件及电极等,开发材料的电子功能,以实现所要求的元器件特性。后道工序是从由硅圆片分切好的一个一个的芯片入手,进行装片、固定、键合联接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性,并便于与外电路联接。
随着电子技术的飞速发展,电子产品得到迅速发展和普及,并且电子部件的组装密度加大,体积也不断缩小,使得电子部件和产品呈现出小型化、轻微化、紧凑化的趋势,更多的部件被集中在一个更小的空间。这些集中的部件在高频工作时会迅速产生大量的热量,且根据调查,温度每升高 2℃,电子元件的可靠性降低 10%。这就要求封装材料能将器件产生的热量及时导出,以此减少热量对设备性能的损害。电子封装技术在这一过程中体现出极大的优势。聚合物基体的导热系数很低,因此,如何提高导热胶黏剂的导热系数、提高封装材料的导热率,使之能将电子元器件工作所产生的热量快速导出具有重要的研究意义,也逐渐成为现在研究的热点。
二
半导体制造工艺和流程
晶圆制造:晶圆制造主要是在晶圆上制作电路与镶嵌电子元件(如电晶体、电容、逻辑闸等),是所需技术最复杂且资金投入最多的过程。以微处理器为例,其所需处理步骤可达数百道,而且所需加工机器先进且昂贵。虽然详细的处理程序是随着产品种类和使用技术的变化而不断变化,但其基本处理步骤通常是晶圆先经过适当的清洗之后,接着进行氧化及沉积处理,最后进行微影、蚀刻及离子植入等反复步骤,最终完成晶圆上电路的加工与制作。晶圆测试:晶圆经过划片工艺后,表面上会形成一道一道小格,每个小格就是一个晶片或晶粒(Die),即一个独立的集成电路。在一般情况下,一个晶圆上制作的晶片具有相同的规格,但是也有可能在同一个晶圆上制作规格等级不同的晶片。晶圆测试要完成两个工作:一是对每一个晶片进行验收测试,通过针测仪器(Probe)检测每个晶片是否合格,不合格的晶片会被标上记号,以便在切割晶圆的时候将不合格晶片筛选出来;二是对每个晶片进行电气特性(如功率等)检测和分组,并作相应的区分标记。芯片封装:首先,将切割好的晶片用胶水贴装到框架衬垫(Substrate)上;其次,利用超细的金属导线或者导电性树脂将晶片的接合焊盘连接到框架衬垫的引脚,使晶片与外部电路相连,构成特定规格的集成电路芯片(Bin);最后对独立的芯片用塑料外壳加以封装保护,以保护芯片元件免受外力损坏。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋(Trim)、成型(Form)和电镀(Plating)等工艺。芯片测试:封装好的芯片成功经过烤机(Burn In)后需要进行深度测试,测试包括初始测试(Initial Test)和最后测试(Final Test)。初始测试就是把封装好的芯片放在各种环境下测试其电气特性(如运行速度、功耗、频率等),挑选出失效的芯片,把正常工作的芯片按照电气特性分为不同的级别。最后测试是对初始测试后的芯片进行级别之间的转换等操作。成品入库:测试好的芯片经过半成品仓库后进入最后的终加工,包括激光印字、出厂质检、成品封装等,最后入库。
三
封装的功能
封装最基本的功能是保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(Metal Can)作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。一般来说顾客所需要的并不是芯片,而是由芯片和PKG构成的半导体器件。PKG是半导体器件的外缘,是芯片与实装基板间的界面。因此无论PKG的形式如何,封装最主要的功能应是芯片电气特性的保持功能。通常认为,半导体封装主要有电气特性的保持、芯片保护、应力缓和及尺寸调整配合四大功能,它的作用是实现和保持从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/0线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接。芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重,由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。芯片电气特性的保持功能,通过PKG的进步,满足不断发展的高性能、小型化、高频化等方面的要求,确保其功能性。芯片保护功能,PKG的芯片保护功能很直观,保护芯片表面以及连接引线等,使在电气或物理等方面相当柔嫩的芯片免受外力损害及外部环境的影响。保证可靠性。应力缓和功能,由于热等外部环境的影响或者芯片自身发热等都会产生应力,PKG缓解应力,防止发生损坏失效,保证可靠性。尺寸调整配合(间距变化)功能,由芯片的微细引线间距调整到实装基板的尺寸间距,从而便于实装操作。例如,从亚微米(目前已小于 0.13μm)为特征尺寸的芯片到以10μm为单位的芯片电极凸点,再到以100μm为单位的外部引线端子,最后到以mm为单位的实装基板,都是通过PKG来实现的。在这里PKG起着由小到大、由难到易、由复杂到简单的变换作用。从而可使操作费用及资材费用降低,而且提高工作效率和可靠性。保证实用性或通用性。
四
微电子封装的三个层次
一级封装:一级封装是用封装外壳将芯片封装成单芯片组件(SCM)和多芯片组件(MCM)。半导体芯片和封装体的电学互联,通常有三种实现途径,引线键合(WB)、载带自动焊(TAB)和倒装焊(Flip Chip),一级封装的可以使用金属、陶瓷,塑料(聚合物)等包封材料。封装工艺设计需要考虑到单芯片或者多芯片之间的布线,与PCB节距的匹配,封装体的散热情况等。二级封装:二级封装是印刷电路板的封装和装配,将一级封装的元器件组装到印刷电路板(PCB)上,包括板上封装单元和器件的互连,包括阻抗的控制、连线的精细程度和低介电常数材料的应用。除了特别要求外,这一级封装一般不单独加封装体,具体产品如计算机的显卡,PCI数据采集卡等都属于这一级封装。如果这一级封装能实现某些完整的功能,需要将其安装在同一的壳体中,例如Ni公司的USB数据采集卡,创新的外置USB声卡等。三级封装:三级封装是将二级封装的组件查到同一块母板上,也就是关于插件接口、主板及组件的互连。这一级封装可以实现密度更高,功能更全组装,通常是一种立体组装技术。例如一台PC的主机,一个NI公司的PXI数据采集系统,汽车的GPS导航仪,这些都属于三级微电子封装的产品。微电子封装工程和电子基板、微电子封装是一个复杂的系统工程,类型多、范围广,涉及各种各样材料和工艺。可按几何维数将电子封装分解为简单的“点、线、面、体、块、板”等。电子基板是半导体芯片封装的载体,搭载电子元器件的支撑,构成电子电路的基盘,按其结构可分为普通基板、印制电路板、模块基板等几大类。其中PCB在原有双面板、多层板的基础上,近年来又出现积层(build-up)多层板。模块基板是指新兴发展起来的可以搭载在PCB之上,以BGA、CSP、TAB、MCM为代表的封装基板(Package Substrate,简称PKG基板)。小到芯片、电子元器件,大到电路系统、电子设备整机,都离不开电子基板。近年来在电子基板中,高密度多层基板所占比例越来越大。微电子封装所涉及的各个方面几乎都是在基板上进行或与基板相关。在电子封装工程所涉及的四大基础技术,即薄厚膜技术、微互连技术、基板技术、封接与封装技术中,基板技术处于关键与核心地位。随着新型高密度封装形式的出现,电子封装的许多功能,如电气连接,物理保护,应力缓和,散热防潮,尺寸过渡,规格化、标准化等,正逐渐部分或全部的由封装基板来承担。微电子封装的范围涉及从半导体芯片到整机,在这些系统中,生产电子设备包括6个层次,也即装配的6个阶段。我们从电子封装工程的角度,按习惯一般称层次1为零级封装;层次2为一级封装;层次3为二级封装;层次4、5、6为三级封装。
五
电子封装工程的六个阶段
层次1(裸芯片):它是特指半导体集成电路元件(IC芯片)的封装,芯片由半导体厂商生产,分为两类,一类是系列标准芯片,另一类是针对系统用户特殊要求的专用芯片,即未加封装的裸芯片(电极的制作、引线的连接等均在硅片之上完成)。层次2(封装后的芯片即集成块):分为单芯片封装和多芯片封装两大类。前者是对单个裸芯片进行封装,后者是将多个裸芯片装载在多层基板(陶瓷或有机)上进行气密性封装构成MCM。层次3(板或卡):它是指构成板或卡的装配工序。将多个完成层次2的单芯片封装和MCM,实装在PCB板等多层基板上,基板周边设有插接端子,用于与母板及其它板或卡的电气连接。层次4(单元组件):将多个完成层次3的板或卡,通过其上的插接端子搭载在称为母板的大型PCB板上,构成单元组件。层次5(框架件):它是将多个单元构成(框)架,单元与单元之间用布线或电缆相连接。层次6(总装、整机或系统):它是将多个架并排,架与架之间由布线或电缆相连接,由此构成大型电子设备或电子系统。封装基板和封装分级:从硅圆片制作开始,微电子封装可分为0、1、2、3四个等级,涉及上述六个层次,封装基板(PKG基板或Substrate)技术现涉及1、2、3三个等级和2~5的四个层次。封装基板主要研究前3个级别的半导体封装(1、2、3级封装),0级封装暂与封装基板无关,因此封装基板一般是指用于1级2级封装的基板材料,母板(或载板)、刚挠结合板等用于三级封装。
胶水(胶粘剂)の紹介
一
胶粘剂的组成
现在使用的胶粘剂均是采用多种组分合成树脂胶粘剂,单一组分的胶粘剂已不能满足使用中的要求。合成胶粘剂由主剂和助剂组成,主剂又称为主料、基料或粘料;助剂有固化剂、稀释剂、增塑剂、填料、偶联剂、引发剂、增稠剂、防老剂、阻聚剂、稳定剂、络合剂、乳化剂等,根据要求与用途还可以包括阻燃剂、发泡剂、消泡剂、着色剂和防霉剂等成分。
1.主剂主剂是胶粘剂的主要成分,主导胶粘剂粘接性能,同时也是区别胶粘剂类别的重要标志。主剂一般由一种或两种,甚至三种高聚物构成,要求具有良好的粘附性和润湿性等。通常用的粘料有:
·天然高分子化合物如蛋白质、皮胶、鱼胶、松香、桃胶、骨胶等。2)合成高分子化合物①热固性树脂,如环氧树脂、酚醛树脂、聚氨酯树脂、脲醛树脂、有机硅树脂等。②热塑性树脂,如聚醋酸乙烯酯、聚乙烯醇及缩醛类树脂、聚苯乙烯等。③弹性材料,如丁腈胶、氯丁橡胶、聚硫橡胶等。④各种合成树脂、合成橡胶的混合体或接枝、镶嵌和共聚体等。
2.助剂为了满足特定的物理化学特性,加入的各种辅助组分称为助剂,例如:为了使主体粘料形成网型或体型结构,增加胶层内聚强度而加入固化剂(它们与主体粘料反应并产生交联作用);为了加速固化、降低反应温度而加入固化促进剂或催化剂;为了提高耐大气老化、热老化、电弧老化、臭氧老化等性能而加入防老剂;为了赋予胶粘剂某些特定性质、降低成本而加入填料;为降低胶层刚性、增加韧性而加入增韧剂;为了改善工艺性降低粘度、延长使用寿命加入稀释剂等。包括:
1)固化剂固化剂又称硬化剂,是促使黏结物质通过化学反应加快固化的组分,它是胶粘剂中最主要的配合材料。它的作用是直接或通过催化剂与主体聚合物进行反应,固化后把固化剂分子引进树脂中,使原来是热塑性的线型主体聚合物变成坚韧和坚硬的体形网状结构。
固化剂的种类很多,不同的树脂、不同要求采用不同的固化剂。胶接的工艺性和其使用性能是由加人的固化剂的性能和数量来决定的。
2)增韧剂
增韧剂的活性基团直接参与胶粘剂的固化反应,并进入到固化产物最终形成的一个大分子的链结构中。没有加入增韧剂的胶粘剂固化后,其性能较脆,易开裂,实用性差。加入增韧剂的胶接剂,均有较好的抗冲击强度和抗剥离性。不同的增韧剂还可不同程度地降低其内应力、固化收缩率,提高低温性能。
常用的增韧剂有聚酰胺树脂、合成橡胶、缩醛树脂、聚砜树脂等。
3)稀释剂稀释剂又称溶剂,主要作用是降低胶粘剂粘度,增加胶粘剂的浸润能力,改善工艺性能。有的能降低胶粘剂的活性,从而延长使用期。但加入量过多,会降低胶粘剂的胶接强度、耐热性、耐介质性能。常用的稀释剂有丙酮、漆料等多种与粘料相容的溶剂。
4)填料填料一般在胶黏剂中不发生化学反应,使用填料可以提高胶接接头的强度、抗冲击韧性、耐磨性、耐老化性、硬度、最高使用温度和耐热性,降低线膨胀系数、固化收缩率和成本等。常用的填料有氧化铜、氧化镁、银粉、瓷粉、云母粉、石棉粉、滑石粉等。5)改性剂改性剂是为了改善胶黏剂的某一方面性能,以满足特殊要求而加入的一些组分,如为增加胶接强度,可加入偶联剂,还可以加入防腐剂、防霉剂、阻燃剂和稳定剂等。
二
胶粘剂的分类
(一)、按成分来分:
胶粘剂种类很多,比较普遍的有:脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、聚丙烯酸树脂胶粘剂,聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂、环氧树脂胶粘剂、合成胶粘剂等等。
1、有机硅胶粘剂
是一种密封胶粘剂,具有耐寒、耐热、耐老化、防水、防潮、伸缩疲劳强度高、永久变形小、无毒等特点。近年来,此类胶粘剂在国内发展迅速,但目前我国有机硅胶粘剂的原料部分依靠进口。
2、聚氨酯胶粘剂
能粘接多种材料,粘接后在低温或超低温时仍能保持材料理化性质,主要应用于制鞋、包装、汽车、磁性记录材料等领域。
3、聚丙烯酸树脂
主要用于生产压敏胶粘剂,也用于纺织和建筑领域。
建筑用胶粘剂:主要用于建筑工程装饰、密封或结构之间的粘接。
4、 热熔胶粘剂
根据原料不同,可分为EVA热熔胶、聚酰胺热熔胶、聚酯热熔胶、聚烯烃热熔胶等。目前国内主要生产和使用的是EVA热熔胶。聚烯烃系列胶粘剂主要原料是乙烯系列、SBS、SIS共聚体。
5、环氧树脂胶粘剂
可对金属与大多数非金属材料之间进行粘接,广泛用于建筑、汽车、电子、电器及日常家庭用品方面
6、脲醛树脂、酚醛、三聚氰胺-甲醛胶粘剂
主要用于木材加工行业,使用后的甲醛释放量高于国际标准。
木材加工用胶粘剂:用于中密度纤维板、石膏板、胶合板和刨花板等
7、合成胶粘剂
主要用于木材加工、建筑、装饰、汽车、制鞋、包装、纺织、电子、印刷装订等领域。目前,我国每年进口合成胶粘剂近20万吨,品种包括热熔胶粘剂、有机硅密封胶粘剂、聚丙烯酸胶粘剂、聚氨酯胶粘剂、汽车用聚氯乙烯可塑胶粘剂等。同时,每年出口合成胶粘剂约2万吨,主要是聚醋酸乙烯、聚乙烯酸缩甲醛及压敏胶粘剂。
(二)、按用途来分:
1、密封胶粘剂
主要用于门、窗及装配式房屋预制件的连接处。高档密封胶粘剂为有机硅及聚氨酯胶粘剂,中档的为氯丁橡胶类胶粘剂、聚丙烯酸等。在我国,建筑用胶粘剂市场上,有机硅胶粘剂、聚氨酯密封胶粘剂应是今后发展的方向,目前其占据建筑密封胶粘剂的销售量为30%左右。
2、建筑结构用胶粘剂
主要用于结构单元之间的联接。如钢筋混凝土结构外部修补,金属补强固定以及建筑现场施工,一般考虑采用环氧树脂系列胶粘剂。
3、汽车用胶粘剂
分为4种,即车体用、车内装饰用、挡风玻璃用以及车体底盘用胶粘剂。
目前我国汽车用胶粘剂年消耗量约为4万吨,其中使用量最大的是聚氯乙烯可塑胶粘剂、氯丁橡胶胶粘剂及沥青系列胶粘剂。
4、包装用胶粘剂
主要是用于制作压敏胶带与压敏标签,对纸、塑料、金属等包装材料表面进行粘合。纸的包装材料用胶粘剂为聚醋酸乙烯乳液。塑料与金属包装材料用胶粘剂为聚丙烯酸乳液、VAE乳液、聚氨酯胶粘剂及氰基丙烯酸酯胶粘剂。
5、电子用胶粘剂
消耗量较少,目前每年不到1万吨,大部分用于集成电路及电子产品,现主要用环氧树脂、不饱和聚酯树脂、有机硅胶粘剂。用于5微米厚电子元件的封端胶粘剂我们可以自己供给,但3微米厚电子元件用胶粘剂需从国外进口。
6、制鞋用胶粘剂
年消费量约为12.5万吨,其中氯丁橡胶类胶粘剂需要11万吨,聚氨酯胶粘剂约1.5万吨。由于氯丁橡胶类胶粘剂需用苯类作溶剂,而苯类对人体有害,应限制发展,为满足制鞋业发展需求,采用聚氨酯系列胶粘剂将是方向。
(三)、按物理形态来分:
1、密封胶
1.1 按密封胶硫化方法分类
(1)湿空气硫化型密封胶
此类密封胶系列用空气中的水分进行硫化。它主要包括单组分的聚氨酯、硅橡胶和聚硫橡胶等。其聚合物基料中含有活性基团,能同空气中的水发生反应,形成交联键,使密封胶硫化成网状结构。
(2)化学硫化型密封胶
双组分的聚氨酯、硅橡胶、聚硫橡胶、氯丁橡胶和环氧树脂密封胶都属于这一类,一般在室温条件下完成硫化。某些单组分的氯磺化聚乙烯和氯丁橡胶密封胶以及聚氯乙烯溶胶糊状密封胶则须在加热条件下经化学反应完成硫化。
(3)热转变型密封胶
用增塑剂分散的聚氯乙烯树脂和含有沥青的橡胶并用的密封胶是两个不同类型的热转变体系。乙烯基树脂增塑体在室温下是液态悬浮体,通过加热转化为固体而硬化;而橡胶-沥青并用密封胶则为热熔性的。
(4)氧化硬化型密封胶
表面干燥的嵌逢或安装玻璃用密封胶主要以干性或半干性植物油或动物油为基料,这类油料可以是精制聚合的、吹制的或化学改性的。
(5)溶剂挥发凝固型密封胶
这是以溶剂挥发后无粘性高聚物为基料的密封胶。这一类密封胶主要有丁基橡胶、高分子量聚异丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡胶等密封胶。
1.2 按密封胶形态分类
(1)膏状密封胶
此类密封胶基本上用于静态接缝中,使用期一般为2年或2年以上。通常采用3种主体材料:油和树脂、聚丁烯、沥青。
(2)液态弹性体密封胶
此类密封胶包括经硫化可形成真正弹性状态的液体聚合物,它们具有承受重复的接缝变形能力。弹性体密封胶所使用的聚合物弹性体包括液体聚硫橡胶、巯端基聚丙烯醚、液体聚氨酯、室温硫化硅橡胶和低分子丁基橡胶等。该类密封胶通常配合成两个组分,使用时将两个组分混合。
(3)热熔密封胶
热熔密封胶又叫热施工型密封胶。指以弹性体同热塑性树脂掺合物为基料的密封胶。这类密封胶通常在加热(150~200℃)情况下经一定口型模型直接挤出到接缝中。热施工可改进密封胶对被粘基料的湿润能力,因此对大多数被粘基料具有良好的粘接力。一经放入适当位置,就冷却成型或成膜,成为收缩性很小的坚固的弹性体。热施工密封胶的主体材料主要是异丁烯类聚合物、三元乙丙橡胶和热塑性的苯乙烯嵌段共聚物。它们通常同热塑性树脂如EVA、EEA、聚乙烯、聚酰胺、聚酯等掺合。
(4)液体密封胶
该类密封胶主要用于机械接合面的密封,用以代替固体密封材料即固体垫圈以防止机械内部流体从接合面泄漏。该类密封胶通常以高分子材料例如橡胶、树脂等为主体材料,再配以填料及其它组分制成。液体密封胶通常分不干性粘着型、半干性粘弹性、干性附着型和干性可剥型等4类。根据具体使用部位及要求选择。
1.3 按密封胶施工后性能分类
(1)固化型密封胶
固化型密封胶可分成刚性密封胶和柔性密封胶两种类型:a)刚性密封胶硫化或凝固后形成坚硬的固体,很少具有弹性;此类密封胶有的品种既起密封作用又起胶接作用,其代表性密封胶是以环氧树脂、聚酯树脂、聚丙烯酸酯、聚酰胺和聚乙酸乙烯酯等树脂为基料的密封胶。b)柔性密封胶在硫化后保持柔软性。它们一般以橡胶弹性体为基料。柔性变化幅度大,硬度(邵尔A)在10~80范围内。这类密封胶中有些品种是纯橡胶,大多数具有良好胶粘剂的性能。
(2)非固化型密封胶
这类密封胶是软质凝固性的密封胶,施工之后仍保持不干性状态。通常为膏状,可用刮刀或刷子用到接缝中,可以配合出许多不同粘度和不同性能的密封胶。
2、按胶粘剂硬化方法分类
低温硬化代号为a;常温硬化代号为b;加温硬化代号为c;适合多种温度区域硬化代号为d;与水反应固化代号为e;厌氧固化代号为f;辐射(光、电子束、放射线)固化代号为g;热熔冷硬化代号为h;压敏粘接代号为i;混凝或凝聚代号为j,其他代号为k。
3、按胶粘剂被粘物分类
多类材料代号为A;木材代号为B;纸代号为C;天然纤维代号为D;合成纤维代号为E;聚烯烃纤维(不含E类)代号为F;金属及合金代号为G;难粘金属(金、银、铜等)代号为H;金属纤维代号为I,无机纤维代号为J;透明无机材料(玻璃、宝石等)代号为K;不透明无机材料代号为L;天然橡胶代号为M;合成橡胶代号为N;难粘橡胶(硅橡胶、氟橡胶、丁基橡胶)代号为O,硬质塑料代号为P,塑料薄膜代号为Q;皮革、合成革代号为R,泡沫塑料代号为S; 难粘塑料及薄膜(氟塑料、聚乙烯、聚丙烯等)代号为T;生物体组织骨骼及齿质材料代号为U;其他代号为V。
4、胶水状态
无溶剂液体代号为1;2有机溶剂液体代号为2;3水基液体代号为3,4膏状、糊状代号为4,5粉状、粒状、块状代号为5;6片状、膜状、网状、带状代号为6;7丝状、条状、棒状代号为7。
5、其它胶粘剂: (不常用到)
金属结构胶、聚合物结构胶、光敏密封结构胶、其它复合型结构胶
热固性高分子胶 :环氧树脂胶、聚氨酯(PU)胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间笨二酚-甲醛树脂胶、二甲笨-甲醛树脂胶、不饱和聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、其它高分子胶
密封胶粘剂:室温硫化硅橡胶、环氧树脂密封胶、聚氨酯密封胶、不饱和聚酯类、丙烯酸酯类、密封腻子、氯丁橡胶类密封胶、弹性体密封胶、液体密封垫料、聚硫橡胶密封胶、其它密封胶
热熔胶:热熔胶条、胶粒、胶粉、EVA热熔胶、橡胶热熔胶、聚丙烯、聚酯、聚酰胺、聚胺酯热熔胶、苯乙烯类热熔胶、新型热熔胶、聚乙烯及乙烯共聚物热熔胶、其他热熔胶
水基胶粘剂:丙烯酸乳液、醋酸乙烯基乳液、聚乙烯醇缩醛胶、乳液胶、其它水基胶
压敏胶(不干胶) :胶水、胶粘带、无溶剂压敏胶、溶剂压敏胶、固化压敏胶、橡胶压敏胶、丙烯酸酯压敏胶、其它压敏胶
溶剂型胶:树脂溶液胶、橡胶溶液胶、其它溶剂胶
无机胶粘剂:热熔无机胶、自然干无机胶、化学反应无机胶、水硬无机胶、其它无机胶
热塑性高分子胶粘剂:固体高分子胶、溶液高分子胶、乳液高分子胶、单体高分子胶、其它热塑性高分子胶
天然胶粘剂:蛋白质胶、碳水化合物胶粘剂、其他天然胶
橡胶粘合剂:硅橡胶粘合剂、氯丁橡胶粘合剂、丁腈橡胶粘合剂、改性天然橡胶粘合剂、氯磺化聚乙烯粘合剂、聚硫橡胶粘合剂羧基橡胶粘合剂、聚异丁烯、丁基橡胶粘合剂、其它橡胶粘合剂
耐高温胶:有机硅胶、无机胶、高温模具树脂胶、金属高温粘合剂、其它耐高温胶
聚合物胶粘剂:丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、过氯乙烯胶粘剂、其它聚合物胶
修补剂:金属修补剂、高温修补剂、紧急修补剂、耐磨修补剂、耐腐蚀修补剂、塑胶修补剂、其它修补剂
医用胶、纸品用胶、导磁胶、防磁胶、防火胶、防淬火胶、防淬裂胶、动物胶、植物胶、矿物胶、食品级胶粘剂、其它胶水。
胶水(胶粘剂)技术原理の简介
常用胶粘剂的固化形式
为了便于胶粘剂对被粘物面的浸润,胶粘剂在粘接之前要制成液态或使之变成液态,粘接后,只有变成固态才具有强度。通过适当方法使胶层由液态变成固态的过程称为胶粘剂的固化。而不同的胶粘剂的固化形式则是不同的,接下来,我们就来了解一下常用胶粘剂的固化形式有哪些?
方法/步骤
1 溶液型胶粘剂的固化
溶液型胶强剂固化过程的实质是随着溶剂的挥发。溶液浓度不断增大,最后达到一定的强度。溶液胶的固化速度决定于溶剂的挥发速度,还受环境温度、湿度、被粘物的致密程度与含水量、接触面大小等因素的影响。配制溶液胶时应选样特定溶剂改组成混合溶剂以调节固化速度。选用易持发的溶剂,易影响结晶料的结晶速度与程度,甚至造成胶层结皮而降低粘接强度,此外快速挥发造成的粘接处降温凝水对粘接强度也是不利的。选用的溶剂挥发太慢,固化时间长,效率低,还可能造成胶层中溶剂滞留,对粘接不利。
2 乳液型胶粘剂的固化
水乳液型胶粘剂是聚合物胶体在水中的分散体,为一种相对稳定体系。当乳液中的水分逐渐渗透到被粘物中并挥发时,其浓度就会逐渐增大,从而因表面张力的作用使胶粒凝聚而固化。环境温度对乳液的凝聚影响很大,温度足够高时乳液能凝聚成连续的膜,温度太低或低于最低成膜温度(该温度通常比玻璃化温度略低一点)时不能形成连续的膜,此时胶膜呈白色,强度根差。不同聚合物乳液的最低成膜温度是不同的,因此在使用该类胶粘剂时一定要使环境温度高于其最低成膜温度,否则粘接效果不好。
3 热熔胶的固化
热熔胶的固化是一种简单的热传递过程,即加热熔化涂胶粘合,冷却即可固化。固化过程受环境温度影响很大,环境温度低,固化快。为了使热熔胶液能允分湿润被粘物,使用时必须严格控制熔融温度和晾置时间,对于粘料具结晶性的热熔胶尤应重视,否则将因冷却过头使粘料结晶不完全而降低粘接强度。
4 增塑糊型胶粘剂的固化
增塑糊是高分子化合物在增塑剂中的一种不稳定分散体系,其固化基本上是高分子化合物溶解在增塑剂中的过程。这种糊在常温下行一定的稳定性。在加热时(一般在150~209℃)高分子化合物的增塑剂能迅速互溶而完全凝胶化,提高温度有利于高分子链运动,有利于形成均匀致密的粘接层。但温度过高会引起聚合物分解。
5
反应型胶粘剂的固化
反应型胶粘剂都存在着活性基团,与同化剂、引发剂和其他物理条件的作用下,粘料发生聚合、交联等化学反应而固化。按固化介式反应型胶粘剂可分为固化剂固化型、催化剂固化型与引发剂固化型等几种类型。至于光敏固化、辐射同化等胶的固化机制一般属于以上类型中。
二步固化胶水、双固化胶水、双重固化胶水の紹介
一
二步固化
分两步固化: 预固化,本固化。
二
双固化
有两种固化方式,比如:可以加热或UV或常温等。
三
双重固化
需要两种固化方式才能完全固化,比如:先UV后常温,或先UV后加热。
导电胶水
一
定义
导电胶水是一种固化或干燥后具有一定导电性能的胶黏剂,应用于液晶显示屏(LCD)、发光二极管(LED)、集成电路(IC)芯片、印刷线路板组件(PCBA)、点阵块、陶瓷电容、薄膜开关、智能卡、射频识别等电子元件和组件的封装和粘接, 有逐步取代传统的锡焊焊接的趋势。导电胶粘剂,简称导电胶,是一种既能有效地胶接各种材料,又具有导电性能的胶粘剂。导电高分子材料的制备较为复杂、离实际应用还有较大的距离,因此广泛使用的均为填充型导电胶。
二
简介
导电胶水是一种固化或干燥后具有一定导电性能的胶黏剂,它通常以基体树脂和导电填料即导电粒子为主要组成成分,通过基体树脂的粘接作用把导电粒子结合在一起,形成导电通路,实现被粘材料的导电连接.由于导电胶水的基体树脂是一种胶黏剂,可以选择适宜的固化温度进行粘接,如环氧树脂胶黏剂可以在室温至150℃ 固化,远低于锡铅焊接的200℃以上的焊接温度,这就避免了焊接高温可能导致的材料变形、电子器件的热损伤和内应力的形成.同时,由于电子元件的小型化、微型化及印刷电路板的高密度化和高度集成化的迅速发展,铅锡焊接的0.65mm的最小节距远远满足不了导电连接的实际需求,而导电胶水可以制成浆料,实现很高的线分辨率.而且导电胶水工艺简单,易于操作,可提高生产效率,也避免了锡铅焊料中重金属铅引起的环境污染.所以导电胶水是替代铅锡焊接,实现导电连接的理想选择.在填充型导电胶中添加的导电性填料,通常均为金属粉末。由于采用的金属粉末的种类、粒度、结构、用量的不同,以及所采用的胶粘剂基体种类的不同,导电胶的种类及其性能也有很大区别。
合成树脂加入某种金属填料或导电炭黑之后就具有导电性。碳可以是任何一种无定形的碳,例如乙炔炭黑或粉碎的石墨粉。在导电环氧胶粘剂或导电涂层中常用的是细银粉,其优点是对盐和氧化物有适当的导电性,因此,能允许少量的氧化或腐蚀,防腐工艺不像薄胶层方法那样重要,其中界面电阻起着重要作用。
相对金面言,银是最合适的导电填料,因为它价格便宜,电阻低。然而,在高温和直流电势的条件下,银会发生向胶层表面电解迁移的现象,但镀银的铜粉不迁移,金也不迁移。银粉的最大加入量约为85%(质量),银粉加入量低于最佳量(约65%)时导电性明显降低,而粘接强度较高。碳(石墨)的导电性相当小,远不如金和银。其他可用的金属填料是镍铝和铜,其中每种金属都有特殊的氧化问题。因此,与球状金属粒子相比,很难形成粒子与粒子的接触。遗憾的是,银粉表面的硬脂酸盐涂层在高温下释放气体,污染关键部件,例如在微电子应用中。有的银粉没有涂层,也就不释放气体产物。铜和铝形成氧化膜,因阻碍了粒子与粒子接触而降低了导电性。
三
分类
导电胶的品种繁多,从应用的角度可以将导电胶分成一般的导电胶和特种导电胶两类。一般性导电胶只对导电胶的导电性能和粘接强度有一定的要求,特种导电胶除了对导电性能和粘接强度有一定的要求外,还有某种特殊的要求,如耐高温、耐超低温、瞬间固化、各向异性和透明性等。
按固化工艺特点,可将导电胶分为固化反应型、热熔型、高温烧结型、溶剂型和压敏型导电胶。
按导电胶中导电粒子的种类不同,可将导电胶分为银系导电胶、金系导电胶、铜系导电胶和炭系导电胶。应用最为广泛的是银系导电胶。
按照导电胶中基料的化学类型又将导电胶分为无机导电胶和有机导电胶。无机导电胶耐高温性能好,但对金属的粘接性能差,主要有环氧树脂导电胶、酚醛树脂导电胶、聚氨酯导电胶、热塑性树脂导电胶和聚酰亚胺导电胶等。应用最广的是环氧树脂导电胶。按照基组成可分为结构型和填充型两大类。结构型是指作为导电胶基体的高分子材料本身即具有导电性的导电胶;填充型是指通常胶粘剂作为基体,而依靠添加导电性填料使胶液具有导电作用的导电胶。
1)按基体可分为热塑性导电胶和热固性导电胶。热塑性导电胶的基体树脂分子链很长,且支链少,在高温下固化时流动性较好,可重复使用。而热固性导电胶的基体材料最初是单体或预聚合物,在固化过程中发生聚合反应,高分子链连接形成交联的三维网状结构,高温下不易流动。
2)按导电机理分为本征导电胶和复合导电胶。本征导电胶是指分子结构本身具有导电功能的共扼聚合物,这类材料电阻率较高,导电稳定性及重复性较差,成本也较高,故很少研究。复合导电胶是指在有机聚合物基体中添加导电填料,从而使其具有与金属相近的导电性能,目前的研究主要集中在这一块。
3)按导电方向分为各向同性(ICAs)和各向异性(ACAs)两大类。前者在各个方向有相同的导电性能;后者在XY方向是绝缘的,而在Z方向上是导电的。通过选择不同形状和添加量的填料,可以分别做成各向同性或各向异性导电胶。两种导电胶各有所长,目前的研究主要集中在后者。
4)按照固化体系的不同,导电胶可分为室温固化导电胶、中温固化导电胶、高温固化导电胶和紫外光固化导电胶等。室温固化需要的时间太长,一般需要数小时到几天,且室温储存时体积电阻率容易发生变化,因此工业上较少使用。中温固化导电胶力学性能优异,且固化温度一般低于150℃,此温度范围能较好地匹配电子元器件的使用温度和耐温能力,因此是目前应用较多的导电胶。
高温固化导电胶高温固化时,金属粒子容易被氧化,固化速度快,导电胶使用时要求固化时间须较短,因此也使用较少。紫外光固化导电胶主要是依靠紫外光的照射引起树脂基体发生固化反应,固化速度较快,树脂基体在避光的条件下可以保存较长时间,是一种新型的固化方式。
5)按导电粒子分类的导电胶又可以分为金导电胶、银导电胶、铜导电胶、碳类导电胶、纳米碳管导电胶等。
Au粉具有优异的导电性和化学稳定性,是最理想的导电填料,但价格昂贵,一般只在要求较高的情况下使用。Ag粉价格相对较低,导电性较好,且在空气中不易氧化,但在潮湿的环境下会发生电迁移现象,使得导电胶的导电性能下降。Cu粉和Ni粉具有较好的导电性,成本低,但在空气中容易氧化,使得导电性变差。因此,导电填料一般选用Ag或cu。
导电填料的粒度和形状对导电胶的导电性能有直接影响。粒度大的填料导电效果优于小的,但同时会带来连接强度的降低。不定形(片状或纤维状)的填料导电性能和连接强度优于球形的。但各向异性导电胶只能用粒度分布较窄的球形填料。不同粒度和形状的填料配合使用可以得到较好的导电性能和连接强度。
四
组成
导电胶主要由树脂基体、导电粒子和分散添加剂、助剂等组成。基体主要包括环氧树脂、丙烯酸酯树脂、聚氯酯等。虽然高度共轭类型的高分子本身结构也具有导电性,如大分子吡啶类结构等,可以通过电子或离子导电 ,但这类导电胶的导电性最多只能达到半导体的程度,不能具有像金属一样低的电阻,难以起到导电连接的作用。市场上使用的导电胶大都是填料型。
填料型导电胶的树脂基体,原则上讲,可以采用各种胶勃剂类型的树脂基体,常用的一般有热固性胶黏剂如环氧树脂、有机硅树脂、聚酰亚胺树脂、酚醛树脂、聚氨酯、丙烯酸树脂等胶黏剂体系。这些胶黏剂在固化后形成了导电胶的分子骨架结构,提供了力学性能和粘接性能保障,并使导电填料粒子形成通道。由于环氧树脂可以在室温或低于150℃固化,并且具有丰富的配方可设计性能,环氧树脂基导电胶占主导地位。导电胶要求导电粒子本身要有良好的导电性能粒径要在合适的范围内,能够添加到导电胶基体中形成导电通路。导电填料可以是金、银、铜、铝、锌、铁、镍的粉末和石墨及一些导电化合物。
导电胶中另一个重要成分是溶剂。由于导电填料的加入量至少都在50% 以上,所以导电胶的树脂基体的黏度大幅度增加,常常影响了胶黏剂的工艺性能。为了降低黏度,实现良好的工艺性和流变性,除了选用低黏度的树脂外,一般需要加入溶剂或者活性稀释剂,其中活性稀释剂可以直接作为树脂基体,反应固化。溶剂或者活性稀释剂的量虽然不大,但在导电胶中起到重要作用,不但影响导电性,而且还影响固化物的力学性能。常用的溶剂(或稀释剂)一般应具有较大的分子量,挥发较慢,并且分子结构中应含有极性结构如碳一氧极性链段等。溶剂的加入量要控制在一定范围内,以免影响导电胶胶体的胶接整体性能。
除树脂基体、导电填料和稀释剂外,导电胶其他成分和胶黏剂一样,还包括交联剂、偶联剂、防腐剂、增韧剂和触变剂等。
五
导电机理
导电胶的导电机理被认为主要是导电粒子之间的相互接触,形成电的通路,使导电胶具有导电性。胶层中导电粒子间的稳定接触是由于导电胶的固化或干燥形成的。含有溶剂的导电胶,在固化或者干燥前,导电粒子在胶黏剂中是分离存在的,相互间没有连续接触,因而处于绝缘状态,如图17.1所示。
图17.1固化干燥前导电胶的状态
导电胶固化或者干燥后,由于溶剂的挥发和胶黏剂固化而引起胶黏剂体积收缩,使得导电粒子相互间呈稳定的连续接触,因而呈现导电性,如图17.2所示。
图17.2固化干燥后导电胶的状态
因隧道效应也可以使得导电胶中导电粒子间产生一定的电流通路。当导电粒子间不相互接触时,粒子间存在隔离层,使得导电粒子中自由电子的定向运动受到阻碍。根据量子力学的概念可知,对一种微观粒子来说,即使其能量小于势垒的能量时,除了有被反射的可能性外,也有贯穿的可能性,也叫做隧道效应。电子是一种微观粒子,因此它具有穿过导电粒子间隔离层阻碍的可能性。
根据以上分析,可将导电胶的导电情况分为3种:
一部分导电粒子完全连续的相互接触形成一种电流通路;
一部分导电粒子是不完全连续接触,其中不相互接触的导电粒子之间由于隧道效应而形成电流通路;
一部分导电粒子完全连续,导电粒子的隔离层完全连续,是电的绝缘。
六
导电胶水的应用及不足点
1、应用: 导电胶已广泛用于印刷电路板组件,发光二极管,液晶显示器,智能卡,陶瓷电容器,集成电路芯片和其他电子元件的封装和粘接。
⑴导电胶水粘剂用于微电子装配,包括细导线与印刷线路、电镀底板、陶瓷被粘物的金属层、金属底盘连接,粘接导线与管座,粘接元件与穿过印刷线路的平面孔,粘接波导调谐以及孔修补;
⑵导电胶水粘剂用于取代焊接温度超过因焊接形成氧化膜时耐受能力的点焊.导电胶水粘剂作为锡铅焊料的替代晶,其主要应用范围如:电话和移动通信系统;广播、电视、计算机等行业;汽车工业;医用设备;解决电磁兼容(EMC)等方面;
⑶ 导电胶水粘剂的另一应用是在铁电体装置中用于电极片与磁体晶体的粘接.导电胶水粘剂可取代焊药和晶体因焊接温度趋于沉积的焊接.用于电池接线柱的粘接是当焊接温度不利时导电胶水粘剂的又一用途;
⑷导电胶水粘剂能形成足够强度的接头,因此,可以用作结构胶粘剂。
2、尽管导电胶具有许多优点,但由于其自身的问题,它仍然不能完全取代Pb/Sn焊料。导电胶主要有以下问题:(1)导电率低。对于一般组件,大多数导电胶是可接受的,但对于功率器件,它们不是必需的;(2)接合效果受元器件类型和PCB(印刷电路板)类型的影响很大;(3)固化时间长;(4)粘合强度相对较低。在小间距的连接中,粘合强度直接影响部件的抗冲击性;(5)成本较高。
导电高分子材料的导电机理
导电高分子材料是主链具有共轭主电子体系,可通过掺杂达到导电态,电导率达1000S/cm以上的高分子材料。经过40年的发展,人们对于导电高分子的类型、导电机理以及如何提高其导电率进行了深入的研究,对于导电高分子的合成与应用进行了多方面的探索。由于其独特的性能,导电高分子不仅作为导电材料应用广泛,在能源、光电子器件、传感器、分子导线等领域也有着潜在的应用价值。
一
复合型导电高分子材料
复合型导电高分子材料中填料的分散状态决定了材料的导电性,从渗流理论中可看出,孤立分散的填料微粒松散地填充于材料中时,当体积分散达到一定的临界含量以后,就可能形成一个连续的导电通路。这时的离子处于两种状态:一是电荷载流子可以在导体内连续地流动,此时离子间发生的是物理接触;二是由于离子间存在粘接剂薄层,载流子本身被激活而运动。所以,复合型导电高分子材料能导电的条件是填充材料应该既一定程度地分散,又能形成松散的网络分布。复合型导电高分子材料中填充材料的成分、填料粒子的分散状态及其与聚合物基体的相互作用都决定了复合材料的导电性,要想材料能具有更良好导电性,必须使填料粒子既能较好地分散,又能形成三维网状结构或蜂窝状结构。
二
结构性导电高分子材料
离子型导电高分子材料中,像聚醚、聚酯这样的大分子链会形成螺旋体的空间结构,阳离子与其配位络合,并且在大分子链段运动促进下在其螺旋孔道内通过空位进行迁移,或者是被大分子“溶剂化”了的阴阳离子在大分子链的空隙间进行跃迁扩散。电子型导电高分子材料中,主体高分子聚合物大多数为共轭体系,长链中的π键电子活性较大,尤其是与掺杂剂形成电荷转移络合物之后,很容易就会从轨道上逃逸出来而形成自由电子。大分子链内以及链间的π电子由于轨道重叠交盖可以形成导带,这样就可以为载流子的转移和跃迁提供通道,在外加能量以及大分子链振动的推动下就可以传导电流了。
导电高分子材料分类
导电高分子材料可以通过产生的方式和结构的不同分为复合型材料与结构型材料两类,这两类材料虽然具有较为相似的特性,但是也存在着较大的差别,而且应用的方向和范围也有所不同。
一
复合型导电高分子材料
由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。
二
结构性导电高分子材料
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小可分为高分子半导体、高分子金属和高分子超导体。按照导电机理分为电子导电高分子材料和离子导电高分子材料。
电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。如在聚乙炔中掺杂少量碘,电导率可提高12个数量级,成为“高分子金属”。经掺杂后的聚氮化硫,在超低温下可转变成高分子超导体。
结构型导电高分子材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试制半导体元器件等。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。
导电高分子的合成
导电高分子材料是近二三十年才发展起来的新兴材料。1975年,L.F.Nichols等人在实验室合成了在低温下具有超导性、导电能力可以与银相媲美的聚硫化氮(SN)x,打破了高分子聚合物是绝缘体这一禁锢。两年后,日本筑波大学Shirakawa教授发现掺杂聚乙炔(PA)呈现金属特性,从此,新的交叉学科—导电高分子科学就诞生了。导电高分子材料实现了从绝缘体到半导体、再到导体的变化,是所有材料中形态跨越幅度最大的材料,也是迄今为止任何材料都无法比拟的。它独特的结构、优异的物理和化学性能引起了学术界的广泛重视,并在各个领域得到广泛应用。电解电容器就是一个很重要的例子。目前,应用广泛的铝电解电容器用的是液体电解质,这种电容器虽有大容量、小体积、低价格等特点,但是,由于使用液体电解质,使它的性能受到限制。钽电解电容器较铝电解电容器有一定的改进。铝电解电容器不能像钽电解电容器那样采用硝酸锰热分解的方法制备固体电解质MnO2,而导电高分子材料成为制备铝电容器固体电解质的首选材料。1983年,日本的三洋电机开发了采用有机半导体TCNQ复盐材料作为电解质的铝电解电容器(OS-CON)。1989年4月,日本又开发了采用导电高分子材料聚吡咯(PPY)作为电解质的叠片式铝电解电容器(SP-CON)。1996年后,又出现了以聚乙撑二氧噻吩(PEDT)作为工作电解质的卷绕式铝电解电容器。目前,聚苯胺、聚吡咯在固体电解质电容器中的应用均有报道,这里主要介绍聚苯胺、聚吡咯的合成方法。
一
聚苯胺的合成
在导电高分子材料中,作为一种最有可能在实际中得到应用的导电聚合物材料,聚苯胺(PAn)具有单体廉价易得、聚合方法简单等优点。导电态的聚苯胺有优异的电化学性能、良好的化学稳定性及较高的电导率。常温下,聚苯胺是典型的半导体材料,其电导率为10-10S/cm,经掺杂以后,聚苯胺电导率可达到5S/cm,电导率可在10-10S/cm~100S/cm之间调节。它的颜色能随着电极电位和溶液的pH值的变化而变化,具有良好的电化学反应活性,是新型的电极活性材料,成为目前导电高分子材料研究中的热点。以前的固体电解质电容器由多孔金属如钽、铌作阳极,在金属上形成氧化膜作为电介质层,用二氧化锰作阴极。最近,大量报道用聚合物作阴极。聚苯胺的合成可采用化学和电化学合成,随着聚合方法、溶液组成及反应条件的改变,聚合得到的聚苯胺在组成结构和性能上均有很大的差异。在制作电解电容器的过程中,选择化学法或电化学法,因基层的不同而异。对于聚苯胺在电容器阳极上的合成,化学法需要氧化剂,但反应可以在室温下进行,反应更易做到;电化学法不需要氧化剂,聚合反应在电极上进行,但电化学聚合使得包覆物不一定均匀。如果基层薄膜的电阻高于1.5Ω/cm2,就不能选用电化学法,只能选择化学氧化法;如果基层薄膜电阻低于1.5Ω/cm2,化学法和电化学法均可选用。
二
聚苯胺的化学合成
氧化聚合
化学氧化法合成聚苯胺是在适当的条件下用氧化剂使苯胺发生氧化聚合。这是在制作电容器时应用比较广泛的一种方法。苯胺的化学氧化聚合通常是在苯胺/氧化剂/酸/水体系中进行的。大致的方法是在玻璃容器中将苯胺和酸按一定的比例混合均匀后,用冰水浴将体系温度降低至0℃~25℃,在搅拌下滴加氧化剂,3分钟内滴加完毕。体系颜色由浅变深,继续搅拌90分钟,然后过滤,洗涤至滤液无色,得到墨绿色的聚苯胺粉末。比较常用的氧化剂有过硫酸铵((NH4)2S2O8)、重铬酸钾(K2Cr2O7)、过氧化氢(H2O2)和碘酸钾(KIO3)等。过硫酸铵由于不含金属离子、氧化能力强,所以应用较广。最近报道的应用二氧化锰(因为二氧化锰的来源广,价格低廉、无毒,安全性高,制造方便)作为氧化剂,用盐酸作介质,采用化学氧化法成功地合成了导电聚苯胺。同时,得到的聚苯胺的结构和电导率与过硫酸铵(APS)作为氧化剂时相似。由表1可知,在同等条件下合成聚苯胺,用APS作氧化剂与用MnO2作氧化剂时的转化率相当,APS作氧化剂高于MnO2作氧化剂时的电导率。尽管电导率有所差异,MnO2仍是苯胺聚合的可选择的氧化剂。
聚苯胺的电导率与质子化程度(掺杂度)和氧化程度有关。研究发现,氧化程度一定时,随着掺杂程度的增加,电导率起初急剧增大,掺杂度超过15%以后,电导率就趋于稳定。一般掺杂度最高可达50%。可以通过控制pH值来控制掺杂率,从而控制电导率。所以,聚苯胺的导电性与H+掺杂程度有很大关系。在酸度低时,掺杂量较少,其导电性能受到影响,因而,一般应在pH值小于3的水溶液中聚合。 所用的质子酸通常有盐酸(HCl)、硫酸(H2SO4)、磷酸(H3PO4)和高氯酸(HClO4)等。室温时,PANI-HCl和PANI-H2SO4的电导率比PANI-H3PO4的电导率高数倍。所以,多数场合用盐酸作掺杂剂,一般导电率达10S/cm~12S/cm,可用作导体材料。最近报道的新型共混十二烷基苯磺酸(DBSA)掺杂聚苯胺,就是以摩尔比为1∶1的苯胺与过硫酸铵作为反应物,在HCl浓度为1mol/L的盐酸中,于室温下合成聚苯胺,经25%(wt%)氨水处理后得到本征态聚苯胺,收率为72%。用50%(wt%)DBSA的乙醇溶液60ml与3g本征态聚苯胺在室温下反应24h,制得导电态的掺杂PANI(DBSA),电导率为3.98S/cm。由于铝电解电容器对Cl-特别敏感,因而,制作电容器时不宜采用HCl作为掺杂剂。在制备固体电解质时,Al箔经刻蚀并在0.05g/100ml的柠檬酸中进行阳极电镀处理,然后连接到阳极导线。聚苯胺用两种方法包覆在Al2O3上:一种是先将阳极浸入苯胺/醚中,随后浸入(NH4)2S2O8/酸体系中,这样反复几次后用去离子水洗涤电解质,在60℃下干燥2h,表面包覆石墨乳和银浆,连接到阴极,最后用环氧树脂包封即可。第二种是直接将阳极浸入聚苯胺溶液中进行包覆,在60℃下真空干燥,然后进行掺杂。对于第一种方法,尽管聚苯胺可以用多种质子酸进行掺杂,但电容器的性能不同。由于是在Al2O3上发生聚合反应,HCl、H2SO4、HClO4会导致漏电流较大。但是H3PO4具有较好的电性能,因为H3PO4不会毁坏Al2O3层。对于第二种方法,用p-甲苯磺酸、p-氨基苯磺酸、醋酸、草酸等进行掺杂时,由于掺杂不完全,不能提供好的电性能。故选用DBSA作为掺杂剂。化学聚合法的优点是适于大量生产,成本较低。但是,化学试剂作为不纯物容易残留在聚合物中,进而影响电容器的电性能。 乳液聚合采用乳液聚合法制备PAn较溶液聚合法有如下优点:用无环境污染且低成本的水作为热载体,产物不需沉淀分离以除去溶剂;若采用大分子有机磺酸充当表面活性剂,则可进一步完成质子酸的掺杂以提高PAn的导电性;通过将PAn制备成可直接使用的乳液状,就可在后面的加工过程中避免再使用一些昂贵的溶剂。这种方法不但可以简化工艺、降低成本,还可以有效地改善PAn的可加工性。因此,乳液聚合法成为该领域的一大研究热点。大致方法是在反应器中加入苯胺与DBSA,混合均匀,依次加入水、二甲苯,充分搅拌,得到透明乳液,然后向乳液中滴加过硫酸铵水溶液,2分钟内滴加完毕,体系的颜色很快变深,体系温度保持在0℃~20℃,继续搅拌60分钟,然后加丙酮破乳,过滤,依次加水,DBSA洗涤至滤液无色,在40℃下真空干燥后得到DBSA掺杂的聚苯胺粉末。这种方法的合成步骤简单,制备出的聚苯胺具有较高的分子量和溶解性。虽然用这种方法制备电容器电解质的并不多,但是,它较氧化聚合法,溶解性得到了提高,是很有应用前景的一种方法。用这种方法得到的PAn粉末可以较好地溶于CHCl3中。微乳液聚合又较乳液聚合有了进一步的提高。用微乳液法制得的聚苯胺的电导率达9.1S/cm。与传统乳液聚合法相比,微乳液聚合法可大大缩短聚合时间,所得产物的电导率优于采用传统乳液聚合法合成的聚苯胺。
聚苯胺的电化学聚合1980年,Diaz首次成功地用电化学氧化聚合法制备出电活性的聚苯胺膜,随后,关于苯胺的电化学聚合反应及聚苯胺电化学行为的大量研究工作在各国展开。目前,用于电化学合成聚苯胺的方法主要有动电位扫描法、恒电流法、恒电位法、脉冲极化法等。用电化学制备的聚苯胺一般是沉积在电极表面的膜或粉末。影响苯胺电化学聚合的因素有电解质溶液的酸度、溶液中阴离子的种类、电极材料、苯胺单体的浓度及其电化学聚合条件等。方法大致是苯胺在锌粒存在下蒸馏提纯后使用,用恒电位仪通过HP34970数据采集器及附带软件PC机联机采集数据。电解池为三隔室电解池,工作电极为环氧树脂涂封的圆柱形Pt棒,用其平面为工作面,辅助电极为铂片电极,参考电极为饱和甘汞电极(SCE)。实验前,工作电极用金相砂纸打磨光滑,经去离子水清净后使用。苯胺和硫酸溶液作为电解液,恒电位(约0.82V.vs.SCE)电解聚合,再经洗涤、真空干燥即可。实验的支持电解液可选用HCl、H2SO4、HClO4等,可选用铂、玻璃碳、铅和不锈钢作为电极材料。其中,电解质溶液的酸度对苯胺的电化学聚合影响最大,当水溶液的pH值大于3时,在铂电极上得到的聚苯胺无电活性,因此,聚苯胺的电化学聚合一般在pH值小于3的水溶液中进行。而且,随着聚苯胺单体浓度的增加和溶液PH值的降低,聚苯胺的电化学活性和电化学聚合速率都明显增加,电化学氧化还原行为可逆性增强。采用在不同的电极材料上和电解液中通过电化学合成聚苯胺的实验表明,在不同的电极上和不同的电解液中,当电极电位小于0.75V时,电极上没有发生苯胺的聚合反应;当电极电位大于或等于0.75V时,电极上才发生苯胺的聚合反应。这说明苯胺聚合反应的电极电位与电极材料、电解液无关。因而,采用恒电位法电解聚合聚苯胺时,电位最好选在0.8V~0.85V之间。在相同的电极材料上(铂电极),在不同的电解液中聚苯胺聚合反应速度的大小顺序。在pH相同的情况下,H2SO4对聚苯胺电化学合成的促进作用大于HCl和HNO3,所以一般选用H2SO4作为电解液;在H2SO4电解液中,不同电极上苯胺的聚合反应速度的大小顺序为VFe>VPt>Vc>VPb,所以,一般选用不锈钢或铂作为电极材料。制作超级电容器的固体电解质时,可采用电化学法中的动电位扫描法。苯胺在120℃的真空中蒸馏,在0.5mol/lAn和0.5mol/lH2SO4的溶液中进行聚合。不锈钢电极(SS)用金刚砂抛光,二次蒸馏水洗涤风干。SCE作参考电极,用动电位扫描法(速度为200mV/s,电压为0.75V)来进行电化学沉积,沉积反复进行,直到每个电极上有90mg聚苯胺。随着扫描速度的提高,沉积速率下降(大约要扫描1000次)。沉积好后,将PAnI/SS电极在0.5mol/lH2SO4中洗3次,在1mol/lHClO4和3mol/lNaClO4中洗1次,在丙烯酸的容器中进行组装,这种电容器可获得450F的可循环电容。
三
可溶性聚苯胺的合成
在制作固体电解电容器的固体电解质时,聚苯胺的溶解性是很重要的参数。因为聚苯胺在大部分常用的有机溶剂中几乎不溶,高分子量的聚苯胺的加工性一直是个难题,因为在软化点或熔融温度以下PAn就已降解,所以,PAn难以熔融加工。近几年,人们在改善聚苯胺的加工性能方面做了大量工作,主要有PAn的复合改性;掺杂态PAn的改性;PAn的嵌段及接枝改性,使聚苯胺的溶解性、加工性得到了改善。可溶性聚苯胺的合成可以说是导电高分子材料领域的一个里程碑。据报道,目前解决导电聚苯胺可溶性的方法主要有四种:其一是采用功能质子酸掺杂制备可溶性的导电聚苯胺,用有机酸掺杂后的溶解性如表2所示,掺杂后聚苯胺的溶解性有了一定的提高;其二是制备聚苯胺的复合物;其三是制备聚苯胺的胶体微粒;其四是制备可溶性的导电聚苯胺烷基衍生物。
最近报道的聚苯乙烯磺酸掺杂聚苯胺的合成中,以苯胺(An)为单体,过硫酸铵(APS)为氧化剂,在聚苯乙烯磺酸(PSSA)的水溶液中,合成了完全可溶于水的PSSA掺杂PAn,并且得到的掺杂PAn的电导率达0.156S/cm。可溶性聚苯胺的合成也大大提高了电解电容器的性能。Shin等人在制作卷绕式铝电解电容器固体电解质时,用化学法和电化学法反复合成聚苯胺,将合成好的聚苯胺溶解在特定的有机溶剂中,在铝金属薄膜上形成介质氧化层后,再浸入具有高电导率的聚苯胺溶液中,形成一层导电聚合膜,作为固体电解质的阴极。浸透不仅可在常温和常压下进行,在高温或降低压力的情况下仍可进行。可溶性的聚苯胺包覆均匀,而且这样制得的电容器的体积小,阻抗低,使用频率和可靠性得到提高,且生产工艺简单,降低了电容器的生产成本(聚苯胺的花费大约只有TCNQ复盐的1/50)。Hideo Yamamoto等人用Al-Zr合金箔片作为一个电极,可溶性的聚苯胺掺杂羧基酸作为第一阴极。用(NH4)2S2O8作为氧化剂,用NH4OH处理获得未掺杂的可溶性PAn,在N-甲基-2吡咯烷酮(NMP)中用羧酸溶解PAn。实验中,掺杂PAn时用不同的羧酸,如表3所示,其中,柠檬酸的温度稳定性最好,故选用柠檬酸掺杂是比较合适的。
四
聚吡咯的合成
在诸多导电聚合物中,由于掺杂聚吡咯具有相对较高的电导率,导电能力又有良好的环境稳定性及易于采用化学或电化学的方法合成等特点,因而受到青睐。Diaz等人于1979年首次采用化学氧化的方法合成了具有电子导电性能的掺杂聚吡咯(PPY)。电容器要求小型、片式、大容量、低等效串联电阻、低损耗正切值和高频性能,传统的液体铝电解电容器及MnO2固体钽电解电容器已难以满足这些要求,因此,采用更高电导率的材料作为电解电容器的阴极,已成为电解电容器的发展趋势。由于聚吡咯的电性能优良,电导率高达120S/cm,较MnO2(约0.1S/cm)、TCNQ(约1S/cm)高2个~3个数量级,较常用有机电解液高4个数量级,较聚苯胺也高了许多,因而,聚吡咯固体电解电容器就成了研究者关注的对象。1985年,日本特许公报(专利号为6037114)最先公开了使用导电聚合物聚吡咯制作为电解质的方法,此后,聚吡咯固体电解质电容器开始得到应用。下面主要介绍聚吡咯的两种合成方法。化学氧化合成法化学氧化聚合即将吡咯单体和氧化剂按一定比例溶于有机溶剂中,慢慢滴入一定浓度的催化剂(乙醇溶液),反应在搅拌下进行2h,吡咯在氧化剂的作用下发生聚合反应形成吡咯的聚合物。反应完毕,将生成物真空抽滤、洗涤、真空干燥。合成的机理就是自身的加成和聚合反应。其中,催化剂可以选用路易士酸(Lewis),如FeCl3、CuCl、CuCl2等。在化学氧化合成聚吡咯的实验中,分别选用FeCl3、CuCl、CuCl2作为催化剂时,聚吡咯的收率及电导率如表4所示,可知FeCl3性能最好。
在-20℃至室温下,聚合反应都可以得到导电性较好的聚合物(σ>10-2S/cm),用适当浓度的掺杂剂(I2、NaF、LiClO4)掺杂聚吡咯,可以提高导电性。但是,化学氧化法通常得到的是黑色粉末(一般称为吡咯黑),由于吡咯黑的不溶/不熔特性,因而,难以用一般高分子加工方法加工成型,实际应用受到限制。用化学氧化法制备吡咯膜的报道还很少。最近报道了通过界面化学氧化聚合的方法制备聚吡咯薄膜。实验选用不同的溶剂,如表5所示,可见三氯甲烷是比较合适的。当选择三氯甲烷和水作为两相溶剂、以过硫酸铵作为氧化剂时,能得到均匀、致密、导电性较高的聚吡咯薄膜。实验证明,随着吡咯与氧化剂浓度比下降及反应温度的升高,过氧化作用增强,聚合膜的电导率下降。
由于这样制得的聚吡咯膜的电导率不够高,且聚吡咯不易附着在金属氧化膜的表面,依靠化学聚合的方法在氧化膜表面上形成的聚吡咯导电膜的密度和强度都不够高,不能满足电容器电性能方面的要求。所以,在制作电解质时,通常采用电化学法合成聚吡咯。但是,由于电容器的阳极氧化膜是不导电的,只能首先在阳极氧化膜上采用化学聚合的方法形成聚合物的导电层(用化学法在阳极上合成一层PPy膜或包覆一层可溶性的PAn膜),或用硝酸锰热分解的方法形成MnO2导电层作为中间电极,以便后面工艺顺利进行。用Al-Zr合金箔片作为一个电极,可溶性的聚苯胺掺杂羧基酸作为第一阴极。然后浸入0.2mol/l吡咯和0.1mol/lβ-萘磺酸中电解聚合包覆一层致密的PPy导电层。先将硝酸锰溶解在适当的溶剂中,电容器的芯子在该溶剂中浸渍,然后在200℃~300℃下进行热分解,在铝箔的氧化铝表面形成导电的二氧化锰层作为第一阴极,然后在MnO2层上包覆通过电解聚合所合成的聚吡咯制得电容器的固体电解质。直接采用化学氧化法一次性合成较厚的导电聚吡咯膜,取代MnO2层。用Fe+3十二烷基苯磺酸盐作为氧化剂(这种氧化剂是在甲醇中用十二烷基苯磺酸中和Fe(OH)3制备的),在-70℃条件下,将赋能后的钽电解电容器浸入有氧化剂的吡咯单体中。将浸渍好的电容器在空气中干燥30分钟,然后用甲醇清洗、烘干。这样,重复几次可形成较厚的导电聚吡咯阴极层,导电率最大可达80S/cm,与电化学合成的聚吡咯可以相媲美。但是,这种方法只适合制作片式电解电容器,而对于卷绕式电解电容器,在将卷绕式芯组浸入吡咯单体和氧化剂溶液中,用化学氧化法形成导电聚合层时,聚合反应会很快发生,固体电解质无法深入电容器芯组的内部,所期待的电性能达不到要求,使卷绕式电容器的应用受到限制。电化学聚合法这种制备导电聚吡咯的方法是借助于电化学聚合反应,同时伴随氧化反应合成的。大致方法是用恒电位法合成聚吡咯膜的形成电流与时间曲线,在阳极上以4mA电流、对甲苯磺酸钠为电解质(室温时含单体浓度为0.1~0.3mol/l),支持电解质和水的电解液进行电化学聚合。40min~100min后取出,洗净溶剂干燥即可。电解质浓度、电解质阴离子种类和聚合时间对聚吡咯薄膜导电性能都有一定的影响。利用电化学沉积方法在腐蚀并赋能的铝箔试样表面合成了聚吡咯,并制备了聚吡咯铝电解电容器,在聚吡咯包覆的过程中,聚合溶液的毛细现象使电容器的阴极和阳极之间形成微小的电气通路。另外,聚合溶液对铝氧化膜有一定的腐蚀作用,导致氧化膜的缺陷增加,这两种情况使电解电容器漏电流增加。研究发现,采用合适的阻断材料和缩短聚合时间均可有效地降低它们的影响。通过电聚合导电聚吡咯的合成研究,认为电解质浓度为8mmol/l,聚合时间为80min时电性能达到最大值,继续延长聚合时间,膜的电导率基本不变。可以分别用两种方法制得Ta电解电容器的电解质:一种方法是在Ta/Ta2O5上先用氧化聚合在阳极上形成一层PPy膜作为中间电极,然后用电化学聚合合成PPy作为阴极;另一种方法是只用氧化聚合反复几次形成PPy阴极。为了获得一定的稳定性,反复几次是很重要的。合成聚吡咯时,混合0.03mol/l吡咯单体和0.07mol/lFeCl3以及0.1mol/l芳香族磺酸盐,在去离子水中,反复浸入,包覆一层聚吡咯,随后用蒸馏水洗涤。在80℃下干燥15分钟,阳极在室温下经1%H3PO4或0.1mol/l芳香族磺酸盐或无机酸处理,实验证明,H2PO4-比芳香族或无机酸更适合作为掺杂剂。
导电高分子材料的制备
一
复合型导电高分子的制备方法
复合型导电高分子在制备中所用的复合方法主要有两种:一种是把亲水性聚合物或者结构型导电高分子和基体高分子放在一起进行共混;另一种是将各种导电填料,如金属粉末、铝纤维、碳纤维、不锈钢纤维及很多金属纤维填充到基体高分子里面,填充的纤维最佳直径为7μm。纤维状填料的接触几率很大,因此金属纤维在填充量很少的情况下就可以获得较高的导电率。其中,金属纤维的长径比对材料的导电性能有很大的影响,长径比越大,其导电性和屏蔽效果越好。
二
结构型导电高分子的制备方法
结构型导电高分子的制备方法有以下几种:化学氧化聚合法、电化学聚合法以及热分解烧结新工艺等。化学氧化聚合法化学氧化聚合是在酸性的条件下用氧化剂制得电导率高、性质基本相同、稳定性好的聚合物,经常使用的氧化剂有(NH4)2S2O8,KIO3,K2Cr2O7等,它们往往同时也是催化剂。化学氧化聚合法制备聚合物主要受反应介质酸的种类及浓度、氧化剂的种类及浓度、反应温度及时间、单体浓度等因素的影响。研究较多的主要是溶液聚合、乳液聚合、微乳液聚合、界面聚合、定向聚合、液晶结合及中间转化法等。电化学聚合法电化学聚合法主要有恒电流法、恒电位法、脉冲极化法以及动电位扫描法。以聚苯胺为例,电化学聚合法是在含苯胺的电解质溶液中采用适当的电化学条件,使苯胺发生氧化聚合反应,生成聚苯胺薄膜黏附于电极表面,或者是聚苯胺粉末沉积在电极表面,一般都是苯胺在酸性溶液中,在阳极上进行聚合。影响聚苯胺电化学聚合法的因素主要有:苯胺单体的浓度、电解质溶液的酸度、电极材料、电极电位、溶液中阴离子种类、聚合反应温度等。电化学聚合法的优点是产物的纯度比较高,聚合时反应条件较简单而且容易控制;缺点是只适宜合成小批量的聚苯胺,很难进行工业化生产。采用化学氧化聚合法制备的聚合物不溶不熔,而且力学性能和加工性能比较差,难以直接进行加工应用;利用电化学聚合法虽然可以获得聚合物的导电膜,但是膜的面积会受到电极面积的限制,不可能做成大面积的实用导电膜。此外,还有一种聚合方法对于导电高分子材料有很好的合成前景,就是酶促聚合。利用酶促聚合方法制备聚苯胺虽然十年之前就报道过,但对于聚吡咯直到最近也没有成功地通过酶促聚合制备出来。有学者相信之所以这样是因为相比于苯胺,吡咯具有更高的氧化电势,由于氧化酶和漆酶的氧化电势比吡咯的低,所以这些酶上的活性位点不能够直接氧化吡咯单体。可以通过寻找合适的酶促反应催化剂来降低氧化电势,从而使反应顺利进行。
导电高分子材料的应用
导电高分子材料是具有导电功能的聚合物材料,随着科学技术以及化工技术的高速发展,导电高分子材料以其自身具有的易加工、质量轻、抗腐蚀、易成型等特性,实现了更大的商业价值以及环保价值,从而得到了人们越来越多的关注。
一
电极材料中的应用
导电高分子材料作为电极材料的应用是目前应用最广泛的一种。实践证明,在以高分子材料如,聚乙炔、聚苯胺、作为电极材料的电池中,电池所具有的电功率、电容量和电能质量相对于传统电池而言具有强大的优势。例如,以聚苯胺为电极材料、以Al-EMIC为电解质的电池中,电压可达到1.0V,以活性碳纤维为电极的电池具有很强的电容量。从而可见,导电高分子材料作为电极材料的应用具有广泛的发展前景和商业价值,但在实际发展中电解质仍存在不稳定性,这需要人们对此进行进一步的研究。
二
点解沉淀物中的应用
导电高分子材料在金属电解沉淀中的应用具有重要的意义。一般情况下,在印刷电路的工艺制造中,通常需要采用电解沉淀的方法进行金属沉淀过程,而传统的制作过程中,大都采用具有有毒性质的化学药剂进行电解,具有一定的危害性且成本较高。采用导电高分子材料如,聚毗咯为基质进行电解沉淀,不仅实现了电解的无毒性发展,也在一定程度上简化的制作流程,增强了金属吸附性。
三
电容器中的应用
导电高分子材料中的高分子电解质在充当电极固体电解质的过程中时,会在电极与电解质之间形成容量巨大的双电层,这种双电层在一定程度上,通过采用一些手段可制作成电容器。多数实践证明,以混合物作为电容器电解质具有较强的电导率;以高分子材料混合物为电解质制成的电偶电容器,则具有很强的充电放电性,有时电容量能达到0.57F/cm2。
四
固体电池中的应用
在传统的电池中,一般采用液态物质为电解质,从而导致电池经常出现漏液、受潮、稳定性差的现象产生。而通过利用导电高分子材料中的高分子固态电解质并制成相应的电极保护膜,则有效的取代了原有的液态电解质,并在减轻电池自身重量的基础上,提升了电池蓄电的能力。此外,有研究表明,通过利用聚吡咯、氧化乙烯固态电解质能制成电压为0.35的光电池,该电池在很大程度上具有绿色环保性质。
五
电致变色上的应用
所谓的电致变色主要是指:通过对物质施加一定的电压,导致物质发生了一定化学反应,从而改变物质颜色变化的过程。实践证明,导电高分子材料在基于电致变色原理的基础上,可有效的发生电致变色过程,从而可将导电高分子材料应用于电致变色领域中,如电致变色智能玻璃、电致变色板等。
六
传感器上的应用
在导电高分子材料中的高分子固态电解质中,在基于不同离子所具有的性质的基础上,采用一定的技术手段进行有效测定可制造出电动势,从而将导电高分子材料中的高分子固态电解质制成传感材料,并应用于传感器中。
七
其他方面的应用
导电高分子材料除上述介绍到的应用外,在其他领域、其他方面同样具有一定的应用价值。例如,微波吸收材料中的应用、半导体元器中的应用、超导体材料中的应用、电子设备仪器防干扰中的应用等。目前,有关于导电高分子材料如何减小热力学、动力学等外界因素的影响,实现在日常生活中的广泛应用以及在新材料中的研究应用,已成为人们研究的重点。
导电银浆
导电银浆由导电相银粉、粘合剂、溶剂及改善性能的微量添加剂组成,可分为聚合物导电银浆和烧结型导电银浆,二者的区别在于粘结相不同。烧结型导电银浆使用低熔点玻璃粉作为粘结相,在500℃以上烧结成膜。
导电银浆产品集冶金、化工、电子技术于一体,是一种高技术的电子功能材料,主要用于制作厚膜集成电路、电阻器、电阻网络、电容器、MLCC、导电油墨、太阳能电池电极、LED、印刷及高分辨率导电体、薄膜开关/柔性电路、导电胶、敏感元器件及其他电子元器件。
金属银粉是导电银浆的主要成分,其导电特性主要靠银粉来实现。银粉在浆料中的含量直接影响导电性能。从某种意义上讲,银的含量高,对提高它的导电性是有益的,但当它的含量超过临界体积浓度时,其导电性并不能提高。银浆中的银的含量一般在60~70% 是适宜的。
银微粒的大小与银浆的导电性能有关。在相同的体积下,微粒大,微粒间的接触几率偏低,并留有较大的空间,被非导体的树脂所占据,从而对导体微粒形成阻隔,导电性能下降。反之,细小微粒的接触几率提高,导电性能得到改善。一般粒度能控制在3~5μm,这样的粒度仅相当于250目普通丝网网径的1/10~1/5,能使导电微粒顺利通过网孔,密集地沉积在承印物上,构成饱满的导电图形。银微粒的形状与导电性能的关系十分密切。用于制作导电印料的导电微粒以呈片状、扁平状、针状的为好,其中尤以片状微粒更为上乘。圆形的微粒相互间是点的接触,而片状微粒就可以形成面与面的接触,印刷后,片状的微粒在一定的厚度时相互呈鱼鳞状重叠,从而显示了更好的导电性能。在同一配比、同一体积的情况下,球状微粒电阻为10-2,而片状微粒可达10-4。
由于银是贵金属,易被还原而回到单质状态,因此液相还原法是目前制备银粉的主要方法。
粘合剂是导电银浆中的成膜物质。在导电银浆中,导电银的微粒分散在粘合剂中。在印刷图形前,依靠被溶剂溶解了的粘合剂使银浆构成有一定粘度的印料,完成以丝网印刷方式的图形转移;印刷后,经过固化过程,使导电银浆的微粒与微粒之间、微粒与基材之间形成稳定的结合。烧结型导电银浆主要采用低熔点玻璃粉作为粘结剂,通过有机树脂和溶剂作为中间载体,印刷图形在基材上,在烧结过程中,有机树脂和溶剂挥发分解,低熔点玻璃粉熔融成膜,与导电银粉形成牢固可导电的涂层。
当低熔点玻璃粉含量不变时,电阻率在一定范围内随着银粉的含量逐渐增加而降低。当银粉含量过大时,电阻率反而升高。因为银粉含量过大,低熔点玻璃粉含量不变,即浆料的固体含量过大,有机载体含量过低,那么浆料的黏度过大,流平性差,丝网印刷时,不易形成连续致密的银膜,故电阻率过大。
当银粉含量不变时,电阻率在一定范围内随着低熔点玻璃粉含量的逐渐增加,电阻率逐渐升高,导电性能越差。在浆料烧结过程中,随着温度升高,低熔点玻璃粉熔融,由于毛细作用浸润并包裹银颗粒,银粉以银离子的形式溶解在熔融的玻璃相。当浆料中的低熔点玻璃粉含量很少时,银粉由于缺少液相而不能铺展在基板上,银粒子倾向于沿垂直方向生长,导致银粒子之间的接触变差。当低熔点玻璃粉含量增加到某一值时,低熔点玻璃粉能够有效润湿银粉,使银粉充分铺展在基板上,银粒子沿水平方向生长,银粒子的接触更加紧密,能够有效形成导电网络。
半导体芯片封装高导热の导电胶水
一
概述
二
特性
三
技术参数及固化条件
四
注意事项
全部0条评论
快来发表一下你的评论吧 !