基于STM32+CS创世 SD NAND(贴片SD卡)完成FATFS文件系统移植与测试(下篇)

描述

四、移植FATFS文件系统

前面第3章,完成了SD NAND的驱动代码编写,这一章节实现FATFS文件的移植。

 

4.1 FATFS文件系统介绍

(1)介绍

FatFs 是一种完全免费开源的 FAT 文件系统模块,专门为小型的嵌入式系统而设计。它完全用标准C 语言编写,所以具有良好的硬件平台独立性,可以移植到 8051、 PIC、 AVR、 SH、 Z80、 H8、 ARM 等系列单片机上而只需做简单的修改。它支持 FATl2、 FATl6 和 FAT32,支持多个存储媒介;有独立的缓冲区,可以对多个文件进行读/写,并特别对 8 位单片机和 16 位单片机做了优化。

 

(2)特点

【1】Windows兼容的FAT文件系统

【2】不依赖于平台,易于移植

【3】代码和工作区占用空间非常小

【4】多种配置选项

【5】多卷(物理驱动器和分区)

【6】多ANSI/OEM代码页,包括DBCS

【7】在ANSI/OEM或Unicode中长文件名的支持

【8】RTOS的支持

【9】多扇区大小的支持

【10】只读,最少API,I/O缓冲区等等

 

(3)移植性

fatfs模块是ANSI C(C89)编写的。 没有平台的依赖, 编译器只要符合ANSI C标准就可以编译。

 

fatf模块假设大小的字符/短/长8/16/32位和int是16或32位。 这些数据类型在integer.h文件中定义。这些数据类型在大多数的编译器中定义都符合要求。 如果现有的定义与编译器有任何冲突发生时,需要自己解决。

 

4.2 下载源码

闪存芯片

FATFS有两个版本,一个大版本,一个小版本。小版本主要用于8位机(内存小)使用。

下载图:

闪存芯片


 

 

4.3 源码结构介绍

将下载的源码解压后可以得到两个文件夹: doc 和 src。 doc 里面主要是对 FATFS 的介绍(离线文档—英文和日文),而 src 里面才是我们需要的源码。

其中,与平台无关的是:

ffconf.h     FATFS配置文件

ff.h        应用层头文件

ff.c        应用层源文件

diskio.h    硬件层头文件

interger.h  数据类型定义头文件

option      可选的外部功能(比如支持中文等)

 

与平台相关的代码:

 

diskio.c     底层接口文件(需要用户提供)

 

 

FATFS 模块在移植的时候,我们一般只需要修改 2 个文件,即 ffconf.h 和 diskio.c。

FATFS模块的所有配置项都是存放在 ffconf.h 里面,我们可以通过配置里面的一些选项,来满足自己的需求。

闪存芯片

 

最顶层是应用层,使用者无需理会 FATFS 的内部结构和复杂的 FAT 协议,只需要调用FATFS 模块提供给用户的一系列应用接口函数,如 f_open, f_read, f_write 和 f_close 等,就可以像在 PC 上读写文件那样简单。

 

中间层 FATFS 模块, 实现了 FAT 文件读/写协议。 FATFS 模块提供的是 ff.c 和 ff.h。除非有必要,使用者一般不用修改,使用时将头文件直接包含进去即可。

 

需要我们编写移植代码的是 FATFS 模块提供的底层接口,它包括存储媒介读/写接口 ( disk、I/O) 和供给文件创建修改时间的实时时钟。

 

4.4 下载源码并加入到工程

先准备好一个有SD NAND驱动代码的STM32工程(代码前面第3章已经贴了),接着就完成下面的步骤。

闪存芯片

打开KEIL工程,添加FATFS文件源码:

闪存芯片闪存芯片


 

 

加入.h文件主要是方便配。cc936.c 用于支持中文。

4.5 修改代码进行移植

(1)修改diskio.c文件

闪存芯片



 

 

注释掉现在不需要的用到的文件,因为我们现在用的是SD卡,与USB,ATA,MMC卡没关系。

 

并加入一个新的宏 :

 

#define SD 0

 

定义SD卡的物理驱动器号为0。

 

修改 disk_status函数,该函数主要是用来获取磁盘状态。现在未用到,可以直接函数体内代码删除。

 

修改截图:

闪存芯片

代码示例:

 

#include "diskio.h"   /* fatf底层API */

#include "sd.h"       /* SD卡驱动头文件  */

/* 定义每个驱动器的物理驱动器号*/

#define SD    0

 

/*-----------------------------------------------------------------------*/

/* 获取设备(磁盘)状态                                                     */

/*-----------------------------------------------------------------------*/

 

DSTATUS disk_status (

BYTE pdrv /* 物理驱动识别 */

)

{

   return 0;  //该函数现在无需用到,直接返回0

}


 

修改disk_initialize函数,添加SD卡的初始化,其他不用到的代码直接删掉,该函数成功返回0,失败返回1。

修改截图:

闪存芯片


 

代码示例:

 

/*-----------------------------------------------------------------------*/

/* 初始化磁盘驱动                                                        */

/*-----------------------------------------------------------------------*/

 

DSTATUS disk_initialize (

BYTE pdrv /* 物理驱动识别 */

)

{

DSTATUS stat;

int result;

 

switch (pdrv) {

case SD :            //选择SD卡

stat=SD_Init();   //初始化SD卡-用户自己提供

}

if(stat)return STA_NOINIT;  //磁盘未初始化

return 0; //初始化成功

}


 

修改disk_read函数,加入SD卡读任意扇区的函数(需要用户自己提供),其他不用到的选项可以删掉。

闪存芯片


修改代码如下:

 

/*-----------------------------------------------------------------------*/

/* 读扇区                                                                */

/*-----------------------------------------------------------------------*/

DRESULT disk_read (

BYTE pdrv, /* 物理驱动编号 - 范围0-9*/

BYTE *buff, /* 数据缓冲区存储读取数据 */

DWORD sector,  /* 扇区地址*/

UINT count /* 需要读取的扇区数*/

)

{

DRESULT res;

int result;

switch (pdrv) {

case SD:

  res=SD_Read_Data((u8*)buff,sector,count);  //读SD扇区函数--用户提供

  return res; //在此处可以判错误

}

return RES_PARERR;  //无效参数

}


修改disk_write 函数,添加写扇区函数:

闪存芯片

代码:

/*-----------------------------------------------------------------------*/

/* 写扇区                                                                */

/*-----------------------------------------------------------------------*/

 

#if _USE_WRITE

DRESULT disk_write (

BYTE pdrv,   /* 物理驱动号*/

const BYTE *buff,        /* 要写入数据的首地址 */

DWORD sector,    /* 扇区地址 */

UINT count    /* 扇区数量*/

)

{

DRESULT res;

int result;

 

switch (pdrv) {

case SD:

res=SD_Write_Data((u8*)buff,sector,count); //写入扇区

  return res;

}

return RES_PARERR;  //无效参数

}

#endif

 

修改disk_ioctl 函数,填充ioctl命令功能。这些功能是标准的命令,在diskio.h有定义。

闪存芯片

代码如下:

 

/*-----------------------------------------------------------------------*/

/* 其他函数                                              */

/*-----------------------------------------------------------------------*/

 

#if _USE_IOCTL

DRESULT disk_ioctl (

BYTE pdrv, /* 物理驱动号 */

BYTE cmd,   /* 控制码  */

void *buff /* 发送/接收数据缓冲区地址 */

)

{

DRESULT res;

int result;

 

switch (pdrv) {

case SD:

switch(cmd)

{

case CTRL_SYNC:      //等待写过程

SD_CS(0);          //选中SD卡

if(SD_Wait_Ready())result = RES_ERROR;/*等待卡准备好*/

     else res = RES_OK;     //成功

SD_CS(1);            //释放SD卡

                        break;  

 

case GET_SECTOR_SIZE://获取扇区大小

   *(DWORD*)buff = 512; 

        res = RES_OK;     //成功

        break;

 

case GET_BLOCK_SIZE:    //获取块大小

*(WORD*)buff = 8;      //块大小(扇区为单位),一块等于8个扇区

         res = RES_OK;

         break;

 

case GET_SECTOR_COUNT: //获取总扇区数量

        *(DWORD*)buff = SD_Get_Sector_Count();

        res = RES_OK;

        break;

 

default:  //命令错误

        res = RES_PARERR;

        break;

}

return res;

}

return RES_PARERR;  //返回状态

}


 

(2)修改ffconf.h文件

需要注意的一些宏配置:

 

#define _CODE_PAGE 936   //采用中文GBK编码       (64行)

#define _USE_LFN 3     //动态的堆上工作             (93行)

#define _MAX_LFN 255   /*_USE_LFN选项开关LFN(长文件名)特性。

#define _VOLUMES 1     /* 支持的磁盘数量(逻辑驱动器)。 */   (142行)

#define _MIN_SS 512                                  (165行)

#define _MAX_SS 512   /*这些选项配置支持扇区大小的范围。(512,1024, 4096*/ 

#define _FS_NORTC     0    /*启用RTC时间功能*/   (202行)

#define _NORTC_MON     1

#define _NORTC_MDAY 1

#define _NORTC_YEAR 2015 //年  

/*需要实现:get_fattime()函数*/


ffconf.h 文件源码:

 

/*---------------------------------------------------------------------------/

/  FatFs - FAT文件系统模块配置文件  R0.11a (C)ChaN, 2015

/---------------------------------------------------------------------------*/

 

#define _FFCONF 64180 /* 版本识别*/

 

/*---------------------------------------------------------------------------/

/ 功能配置

/---------------------------------------------------------------------------*/

 

#define _FS_READONLY 0

/* 这个选项开关只读配置。(0:读/写或1:只读)   

/只读配置删除编写API函数,f_write(),f_sync(),   

/ f_unlink(),f_mkdir(),f_chmod(),f_rename(),f_truncate(),f_getfree()   

/写和可选的功能. */

 

 

#define _FS_MINIMIZE 0

/*此选项定义删除一些基本的API函数极小化水平。  

/   

/ 0:所有基本功能都是激活的。  

/ 1:f_stat(),f_getfree(),f_unlink(),f_mkdir(),f_chmod(),f_utime(),   

/ f_truncate()和f_rename()函数删除。  

/ 2:f_opendir(),f_readdir()和f_closedir()中除了1。  

/ 3:f_lseek()函数删除除了2。*/

 

 

#define _USE_STRFUNC 1

/*这个选项开关字符串函数,f_gets(),f_putc(),f_puts()和 

/ f_printf()。  

/   

/ 0:禁用字符串函数。  

/ 1:启用没有LF-CRLF转换。  

/ 2:启用LF-CRLF(回车换行)转换。*/

 

 

#define _USE_FIND 0

/*这个选项开关过滤目录读取特性和相关功能,   

/ f_findfirst()和f_findnext()。(0:禁用或1:启用)*/

 

 

#define _USE_MKFS 1

/* 这个选项开关f_mkfs()函数。(0:禁用或1:启用) */

 

 

#define _USE_FASTSEEK 1

/* 这个选项开关快速寻求功能。(0:禁用或1:启用) */

 

 

#define _USE_LABEL 1

/*   磁盘卷标这个选项开关功能,f_getlabel()和f_setlabel()。  

/(0:禁用或1:启用) */

 

 

#define _USE_FORWARD 0

/*  这个选项开关f_forward()函数。(0:禁用或1:启用)   

/启用它,也_FS_TINY需要设置为1. */

 

 

/*---------------------------------------------------------------------------/

/ 语言环境和名称空间配置

/---------------------------------------------------------------------------*/

 

#define _CODE_PAGE 936  //采用中文GBK编码

/* 这个选项指定OEM代码页在目标系统上使用。  

/不正确的代码页的设置会导致文件打开失败.

/

/   1   - ASCII (没有扩展字符。Non-LFN cfg。只有)

/   437 - U.S.

/   720 - 阿拉伯语

/   737 - 希腊语;

/   771 - 阿富汗

/   775 - 波罗的海

/   850 - 拉丁1

/   852 - 拉丁2

/   855 - 西里尔字母

/   857 - 土耳其语

/   860 - 葡萄牙语

/   861 - 冰岛语

/   862 - 希伯来人

/   863 - 加拿大法语

/   864 - 阿拉伯语

/   865 - 日耳曼民族的

/   866 - 俄语

/   869 - 希腊 2

/   932 - 日本人 (DBCS)

/   936 - 简体中文(DBCS)

/   949 - 韩国人 (DBCS)

/   950 - 繁体中文(DBCS)

*/

 

 

#define _USE_LFN 3 //动态的堆上工作

#define _MAX_LFN 255

/*_USE_LFN选项开关LFN(长文件名)特性。

/

/ 0:禁用LFN特性。_MAX_LFN没有影响。  

/ 1:启用LFN BSS静态工作缓冲区。总是不是线程安全的。  

/ 2:启用LFN与动态缓冲栈上的工作。  

/ 3:使LFN与动态缓冲区在堆上工作。

/

/  当启用LFN(长文件名)特性,Unicode(选项/ unicode.c)必须处理功能  

/被添加到项目中。LFN工作缓冲区占用(_MAX_LFN + 1)* 2字节。  

/当使用堆栈缓冲区,照顾堆栈溢出。当使用堆  

/工作缓冲区内存,内存管理功能,ff_memalloc()和  

/ ff_memfree(),必须添加到项目中。 */

 

 

#define _LFN_UNICODE 0 

/* 这个选项开关字符编码的API。(0:ANSI / OEM或1:Unicode)   

路径名/使用Unicode字符串,并设置_LFN_UNICODE启用LFN特性  

/1。这个选项也会影响行为的字符串的I / O功能。

*/

 

 

#define _STRF_ENCODE 3

/* 当_LFN(长文件名)_UNICODE是1,这个选项选择文件的字符编码  

/通过字符串读取/写入I /O功能,f_gets(),f_putc(),f_puts和f_printf().

/

/  0: ANSI/OEM

/  1: UTF-16LE

/  2: UTF-16BE

/  3: UTF-8

/

/ 当_LFN_UNICODE = 0时,该选项没有影响。*/

 

#define _FS_RPATH 0

/* 这个选项配置相对路径的功能。  /   

/ 0:禁用相对路径特性和删除相关功能。  

/ 1:启用相对路径特性。f_chdir()和f_chdrive()是可用的。  

/ 2:f_getcwd()函数可用除了1。  /   

/注意,目录项读通过f_readdir()这个选项。 

*/

 

/*---------------------------------------------------------------------------/

/ 驱动/卷配置

/---------------------------------------------------------------------------*/

 

 

#define _VOLUMES 1

/* 支持的磁盘数量(逻辑驱动器)。 */

 

 

#define _STR_VOLUME_ID 0

#define _VOLUME_STRS "RAM","NAND","CF","SD1","SD2","USB1","USB2","USB3"

/* STR_VOLUME_ID选项开关卷ID字符串功能。  

/当_STR_VOLUME_ID设置为1时,也可以使用预先定义的字符串在路径名称/数量。

为每个_VOLUME_STRS定义驱动ID字符串  

/逻辑驱动器。条目的数量必须等于_VOLUMES。有效字符  

/驱动ID字符串:a - z和0 - 9。*/

 

 

#define _MULTI_PARTITION 0

/*  这个选项开关多分区的特性。在默认情况下(0),每个逻辑驱动器  

/号绑定到相同的物理驱动器号  

/物理驱动器将被安装。当启用分区特性(1),   

/每个逻辑驱动器号是绑定到任意物理驱动器和分区  

/中列出VolToPart[]。还f_fdisk()函数可用. */

 

 

#define _MIN_SS 512

#define _MAX_SS 512

/*  这些选项配置支持扇区大小的范围。(512,1024,   

/ 2048或4096)总是为大多数系统设置两个512,卡和所有类型的内存  

/硬盘。但是可能需要更大的值为车载闪存和一些  

/类型的光学媒体。当_MAX_SS大于_MIN_SS,fatf配置  

/变量扇区大小和GET_SECTOR_SIZE命令必须执行  disk_ioctl()函数. */

 

 

#define _USE_TRIM 0

/* 这个选项开关ATA-TRIM特性。(0:禁用或1:启用)   

/启用削减特性,也应该实现CTRL_TRIM命令  

/ disk_ioctl()函数。*/

 

 

#define _FS_NOFSINFO 0

/*   

如果你需要知道正确的自由空间体积FAT32,设置一些0   

/选项,f_getfree()函数在第一次后体积将迫使山  

/全脂肪扫描。位1控制使用的集群数量分配。  /   

/ bit0 = 0:使用免费的集群计算FSINFO如果可用。  

/ bit0 = 1:不相信自由FSINFO集群计算。  

/ bit1 = 0:最后使用集群可用FSINFO如果数量分配。  

/ bit1 = 1:不相信最后分配FSINFO集群数量.

*/

 

 

 

/*---------------------------------------------------------------------------/

/ 系统配置列表

/---------------------------------------------------------------------------*/

 

#define _FS_TINY 0

/* 这个选项开关小缓冲区配置。(0:正常或1:小)   

/小配置,文件对象的大小(FIL)_MAX_SS减少字节。而不是私人部门从文件对象,缓冲了  

/公共部门缓冲文件系统中的对象(fatf)是用于该文件  

/数据传输. */

 

 

#define _FS_NORTC 0

#define _NORTC_MON 1

#define _NORTC_MDAY 1

#define _NORTC_YEAR 2015 //年

/* _FS_NORTC选项开关时间戳的特性。如果系统没有/

 RTC函数或不需要有效的时间戳,_FS_NORTC 1设置为禁用/

 时间戳的特性。所有对象修改fatf将有一个固定的时间戳。/

  固定的时间定义为_NORTC_MON _NORTC_MDAY _NORTC_YEAR。  

 

/当启用时间戳特性(_FS_NORTC = = 0),需要实现get_fattime()函数。  /

 添加到项目RTC读当前时间形式。_NORTC_MON,   /

_NORTC_MDAY和_NORTC_YEAR没有效果。  

/这些选项没有影响只读配置(_FS_READONLY = = 1)。 */

 

 

#define _FS_LOCK 0

/*  _FS_LOCK选项开关控制复制的文件打开的文件锁定功能  

/和非法操作打开对象。这个选项_FS_READONLY时必须是0   

/是1。  /   

/ 0:禁用文件锁定功能。为了避免体积腐败、应用程序  

/应该避免非法打开,删除和重命名的开放对象。  

/ > 0:启用文件锁定功能。值定义了多少文件/子目录  

可以同时打开的/文件锁的控制之下。注意,这个文件独立于re-entrancy /锁功能。 */

 

 

 

#define _FS_REENTRANT 0

#define _FS_TIMEOUT 1000

#define _SYNC_t HANDLE

/*  _FS_REENTRANT选项开关re-entrancy fatf的(线程安全)   

/模块本身。注意,不管这个选项,文件访问不同  

/体积始终是凹角和音量控制功能,f_mount(),f_mkfs()   

/和f_fdisk()函数,总是不凹角。只有文件/目录的访问  

/相同的体积是这个功能的控制。  

/   

/ 0:禁用re-entrancy。_FS_TIMEOUT和_SYNC_t没有效果。  

/ 1:启用re-entrancy。还提供用户同步处理程序,   

/ ff_req_grant(),ff_rel_grant(),ff_del_syncobj()和ff_cre_syncobj()   

/函数,必须添加到项目中。样品中可用  

/选项

/ syscall.c。

/

/  _FS_TIMEOUT定义超时时间单位的滴答声。  

/ _SYNC_t定义了O 

/ S依赖同步对象类型。例如处理、ID、OS_EVENT *   

/ SemaphoreHandle_t等. .O / S的头文件定义需要  

/包括在ff.c的范围。 */

 

 

#define _WORD_ACCESS 0

/* _WORD_ACCESS选项是一个只有依赖于平台的选择。

它定义了这个词/访问方法是用来体积上的数据。

/

/ 0:逐字节的访问。总是兼容所有平台。  

/ 1:词的访问。不要选择这个,除非在下列条件。  

/   

/ *地址对齐内存访问总是允许所有指令。  

/ *字节顺序的记忆是低位优先。  

/   

/如果是这样的情况,_WORD_ACCESS也可以减少代码的大小设置为1。  

/下表显示允许设置某种类型的处理器。

/

/  ARM7TDMI   0   *2          ColdFire   0    *1         V850E      0    *2

/  Cortex-M3  0   *3          Z80        0/1             V850ES     0/1

/  Cortex-M0  0   *2          x86        0/1             TLCS-870   0/1

/  AVR        0/1             RX600(LE)  0/1             TLCS-900   0/1

/  AVR32      0   *1          RL78       0    *2         R32C       0    *2

/  PIC18      0/1             SH-2       0    *1         M16C       0/1

/  PIC24      0   *2          H8S        0    *1         MSP430     0    *2

/  PIC32      0   *1          H8/300H    0    *1         8051       0/1

/

/   

* 1:高位优先。  / 

* 2:不支持不连续的内存访问。  / 

* 3:一些编译器生成LDM(逻辑磁盘管理器 ) / STM mem_cpy(内存拷贝)函数。

*/


 

(3)实现动态内存分配函数与时间函数

ff.h文件有动态内存的释放,动态内存申请,时间获取函数接口。

闪存芯片


 

在diskio.c文件实现函数功能:

闪存芯片


 

代码实现如下:

 

//动态内存分配

void* ff_memalloc (UINT msize)     /* 分配内存块 */

{

return (void*)malloc(msize); //分配空间

}

 

 

//动态内存释放

void ff_memfree (void* mblock)     /* 空闲内存块 */

{

free(mblock);              //释放空间

}

 

 

//返回FATFS时间

//获得时间  

DWORD get_fattime (void)

{

//Get_RTC_Timer(); //获取一次RTC时间

return (RTC_Timer.year-1980)<<25|   //年

  RTC_Timer.month<<21|  //月

       RTC_Timer.day<<16|    //日

       RTC_Timer.hour<<11|   //时

       RTC_Timer.minute<<5|  //分

       RTC_Timer.sec;        //秒

}

 

 

 

/*

Return Value

Currnet local time is returned with packed into a DWORD value. The bit field is as follows:

bit31:25

Year origin from the 1980 (0..127)

bit24:21

Month (1..12)

bit20:16

Day of the month(1..31)

bit15:11

Hour (0..23)

bit10:5

Minute (0..59)

bit4:0

Second / 2 (0..29)

*/


 

 

(4)修改堆栈空间

完成了上述的修改,还需要修改堆栈空间,因为长文件支持需要占用堆空间。

修改STM32启动文件如下:

闪存芯片



 

 

(5)编译工程测试

修改完毕之后,给开发板插上SD卡,调用API函数在SD卡创建一个文件,并写入数据,测试是否成功:

 

#include "ff.h"

FATFS fs;  // 用户定义的文件系统结构体

FIL  file;  // 用户定义的文件系统结构体

u8 buff[]="123 知识!!";

int main(void)

{

u32 data;                //检测SD卡容量

u8 i,res;

    LED_Init();              //LED灯初始化

    Delay_Init();

    KEY_Init();

    USART1_Init(72,115200);

    USART2_Init(36,115200);

     FLASH_Init();

  Set_Font_addr(); //字库地址初始化

  FSMC_SRAM_Init();

  LCD_Init();

  RTC_Init();     //RTC时钟初始化

  while(SD_Init())    //检测不到SD卡,SD相关硬件初始化

{

i=!i;

LCD_ShowString(60,150,200,16,16,"SD Card Error!  Please Check SD Card!!",0xf800);

Delay_ms(500);

LED1(i)//DS0闪烁

}

 

       f_mount(&fs,"0",1);  // 注册工作区,驱动器号 0,初始化后其他函数可使用里面的参数

printf("注册工作区!\n");

 

if(f_mkfs("0",0,4096))  //格式化SD卡

{

printf("格式化失败!!\n");

}

else

{

printf("格式化成功!!\n");

}

res = f_open(&file, "/file.c", FA_OPEN_ALWAYS | FA_READ | FA_WRITE);

if(res==0)

{

printf("文件创建成功!!\n");

}

else

{

printf("文件创建失败!!\n");

}

res =f_write(&file,buff,strlen((const char*)buff),&data);

if(res==0)

{

printf("数据写入成功!!\n");

}

else

{

printf("数据写入失败!!\n");

}

printf("成功写入%d字节数据\n",data);

f_close(&file);  //关闭文件

//_FS_RPATH

 

while(1)

{

Delay_ms(1000);

LED1(1);

Delay_ms(500);

LED1(0);

}

}


 

五、案例使用

5.1 读取GBK字库文件(LCD汉字显示)

产品开发中,如果设备带有LCD显示屏,一般会显示各种文字提示,或者机器操作说明,显示中文需要字库,为了方便字模的提取,可以将字库文件制作好之后放到SD NAND上,通过文件系统打开字库文件,读取字模进行显示。

 

下面贴出文件系统读取字模的核心代码:

/*

函数功能: 显示GBK字库数据

          u32 x  范围0~319

          u32 y  范围0~479

          u32 size  数据的宽度(必须是8的倍数)  是正方形

          u8 *p  中文

说明: 取模横向坐标必须保证是8的倍数

*/

 

void ILI9341_DisplayGBKData(u32 x,u32 y,u32 size,u8 *p)

{

FIL fp;

UINT br;

u8 L,H;

  u32 Addr;

  u16 font_size=size/8*size; //字体占用的点阵码字节大小

  u8 *buff=NULL;

H=*p;

L=*(p+1);

if(L<0x7f)L=L-0x40;

else L=L-0x41;

H=H-0x81;

Addr=(190*H+L)*font_size; //中文在字库里的偏移量

buff=malloc(font_size);   //使用的堆空间

if(buff==NULL)return;

 

switch(size)

{

case 16:

if(f_open(&fp,"0:/font/gbk16.DZK",FA_READ)!=FR_OK)

                {

                      printf("f_open error.\r\n");

                }

f_lseek(&fp,Addr);

f_read(&fp,buff,font_size,&br);

f_close(&fp);

               

break;

case 24:

                f_open(&fp,"0:/font/gbk24.DZK",FA_READ);

f_lseek(&fp,Addr);

f_read(&fp,buff,font_size,&br);

f_close(&fp);

break;

case 32:

 

break;

}

//显示中文

ILI9341_DisplayData(x,y,size,size,buff);

 

//释放空间

free(buff);

}


 

这是读取字模,显示的效果:


 

闪存芯片


 

5.2 读取MP3文件播放(开机音乐)

这个例子是演示文件系统的目录扫描函数使用方式,读取指定目录下的MP3文件进行播放。

 

u8 PlayerMP3(const char *path);

FATFS FatFs;

int main()

{

LED_Init();

BEEP_Init();

KeyInit();

  USARTx_Init(USART1,72,115200);

 

  

  SDCardDeviceInit(); //初始化SD卡

  

//  res=f_mkfs("0:",FM_ANY,0,work,sizeof work);

//  if(res)printf("格式化失败!\n");

//  else printf("格式化成功!\n");

  f_mount(&FatFs, "0:", 0);   //注册工作区

  

  PlayerMP3("0:/MP3");

  

while(1)

{

    DelayMs(100);

    LED0=!LED0;

}

}

 

 

/*

函数功能: 扫描目录mp3播放

0表示成功 1表示失败

*/

u8 PlayerMP3(const char *path)

{

    DIR dir;

    FRESULT res; 

    FILINFO fno; //存放读取的文件信息

    char *abs_path=NULL;  

    

    /*1. 打开目录*/    

    res=f_opendir(&dir,path);

    if(res!=FR_OK)return res;

    

    /*2. 循环读取目录*/

     while(1)

     {

        res=f_readdir(&dir,&fno);

        if(fno.fname[0] == 0 || res!=0)break;

        printf("文件名称: %s,文件大小: %ld 字节\r\n",fno.fname,fno.fsize);

 

        /*过滤目录*/

        if(strstr(fno.fname,".mp3"))

        {

            //申请存放文件名称的长度

            abs_path=malloc(strlen(path)+strlen(fno.fname)+1);

            if(abs_path==NULL)break;

             

            strcpy(abs_path,path);

            strcat(abs_path,"/");

            strcat(abs_path,fno.fname);

          

            printf("abs_path=%s\n",abs_path);

            VS1053_MP3(0,0,abs_path);     

            free(abs_path);

        }

    }

    

    /*3. 关闭目录*/

    f_closedir(&dir);

    return 0;

}

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分