GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),它是泛指所有的卫星导航系统,包括全球的、区域的和增强的。GNSS是覆盖全球的自主地利空间定位的卫星系统,用于导航与定位测量,简单来讲,GNSS系统就是利用卫星信号传输实时位置与时间信息,并从而计算得到地面接收设备的经纬度等地理位置信息。
GNSS系统和其他卫星通信一样,可以从结构上大概分成三部分:空间段-地面段-用户段,其中:
GNSS技术是一种卫星通信技术,更是一种无线通信技术。无线通信技术发展至今不过200余年,卫星通信则更短,因此GNSS的发展历史并不算长。
GNSS的发展可以追溯到世界上第一颗人造卫星Sputnik,它是由苏联研发,用于大气层环境测试与无线电与光学轨道追踪方法测试,这引发了美苏之间的太空竞赛。3年后,美国军方开发了世界上第一套基于多普勒效应的定位系统Transit。
此后为了提高定位精度,美国研发了更为精准的基于卫星位置与特定时间精准测距的Timation,这也被认为是GPS的先驱。此后美、苏持续研发GNSS定位技术。1973年,美国建立GPS基础架构,并逐步完善;1982年,GLONASS系统在经过十多年的研发后最终成形;2000年,中国引入北斗系统;2010年,日本发布准天顶卫星系统(QZSS);2005年,欧盟推出伽利略系统;2013年,印度推出印度区域导航卫星系统 (IRNSS),现称为 NavIC。
GNSS 定位基于三角测量原理,依赖于对接收器与每颗可见卫星之间的距离的估计,即三点定位法,空间中三个圆的交点即是定位位置(实际上数学问题中三个圆的交点可能不止一个,但是剩余的都会被视作异常,如不在地球表面等),从这个角度讲,定位最少需要三颗卫星。但是,实际应用中有所不同:因为GNSS信号需要传播的距离非常远,期间存在大量干扰与削弱,因此统一的时间参考误差极大,所以实际应用中会将时间作为第四个变量:接收器参考与卫星机载时钟之间的时间差。
正如上文所说,目前GNSS泛指所有的卫星导航系统,包括全球的、区域的和增强的:
这些星座使用L波段的无线电频率(一般指1100-1600MHz)来传输它们的信号,每个星座可能会为这些信号选择不同的频率并使用对应的标签,GNSS定位设备通常接收至少两个频率。
GPS系统,即全称全球定位系统(Global Positioning System),是世界上第一个在太空中建立的星座,目前该系统有34颗在轨卫星,支持L1(1575.42 MHz)、L2(1227.60MHz)和L5(1176.45MHz)频率,正在通过部署新的GPS III卫星对其进行现代化改造。
北斗卫星导航系统BDS,简称北斗,是目前世界范围内最大的GNSS星座。20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供服务;2020年,建成北斗三号系统,向全球提供服务,目前有51颗卫星在轨。
北斗系统具有以下特点:
GLONASS格洛纳斯,全称为 “全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTEM”,最早开发于苏联时期,前身为Parus,后由俄罗斯继续研发。自2011年起全面运行,目前有27颗卫星在轨运行,GLONASS卫星在GLONASS L1(1598.0625-1605.375 MHz)、L2(1242.9375-1248.625MHz)和L3(1202.025 MHz)频率上广播信号。最新一代卫星GLONASS-K于2016年2月投入使用。
伽利略是一个较新的星座,于2011年首次发射,由欧洲全球导航卫星系统局在欧盟以外运营,目前有30颗在轨卫星,这些卫星沿L波段频谱传输,将其频率标记为 E1(1575.42MHz)、E5(1191.795MHz)、E5a(1176.45MHz)、E5b (1207.14MHz)和E6(1278.75MHz)。除了基于E1和E5频段信号的高质量开放服务外,Galileo还是第一个为遇险用户提供回传链路的GNSS星座。
二者都是区域性的导航系统,QZSS全称为准天顶卫星系统Quasi-Zenith Satellite System,目前共有四颗卫星,与GPS L1、L2、L5同频;IRNSS/NaVic,印度区域导航卫星系统(Indian Regional Navigation Satellite System (IRNSS)、NAVIC,在轨数量8颗,与GPS L5同频。
最直观来讲,它们拥有着不同的频段与编码方式:
针对主流的四大星座的对比:
此外,卫星的增强系统(SBAS)提供全局误差校正,以提高GNSS应用的准确性、完整度、连续性与可用性。
目前GNSS测试一方面主要是各类接收机本身的测试项目会用到,例如定位时间测试、捕获时间测试、接收机灵敏度测试、触发精度测试等。这类测试结构简单,实现容易。
此外,伴随着自动驾驶与相关行业的发展,针对高精度定位的测试也越发频繁,包括V2X、车辆导航、车内娱乐系统测试等等,这部分测试大部分都需要在真实环境中联调测试,无法进行单个模块的性能测试,因此HIL(hardware in loop)硬件在环仿真测试方法逐渐成为主流,而这也对测试的需求、架构、精度等提出了更高的要求。
虹科Orolia GNSS模拟器是基于仿真的手段,结合软件定义的高级架构,在GNSS仿真的基础上更进一步,推出“依托软件引擎,开放硬件平台,高效开放的完成GNSS仿真”的Skydel GNSS仿真引擎方案,并借助该引擎推出适合于HIL测试的GSG-7与复杂场景与多实例测试的GSG-8。
虹科Orolia GSG-8在基础款模拟器的基础上提供的最新定位、导航和计时测试解决方案,在一个易于使用、可升级和可扩展的平台上提供了最高标准的全球导航卫星系统(GNSS)信号测试和传感器模拟性能。它具有1000Hz的模拟迭代率、高动态性、实时同步,以及对所有卫星信号的模拟,先进的GNSS干扰和欺骗功能允许创建满足关键任务应用需求所需的任何场景。虹科Orolia GSG-8支持多星座、多频率和数百个信号,非常适合空间轨迹模拟、定制PNT信号、硬件在环等应用。
主要特点:
在本期文章中,我们介绍了GNSS技术的发展历程、原理,并对不同类型的定位技术进行了介绍,在下一期文章中我们将继续讨论GNSS的优点与应用及其测试方法和解决方案。
参考:
① 北斗卫星导航系统网站
② First-TF:What is GNSS?
③ Fibocom:一文读懂GNSS(全球导航卫星系统)
④ HEXAGON:What are Global Navigation Satellite Systems?
全部0条评论
快来发表一下你的评论吧 !