TIM热界面材料及胶黏剂在EV电池的应用

描述

 

关键词:TIM热界面材料,胶粘产品,新能源汽车电池

导语:

热界面材料(Thermal Interface Material, TIM)

选择理想的热界面材料需要关注如下因素:

1)热导率:热界面材料的体热导率决定了它在界面间传递热量的能力,减少热界面材料本身的热阻;

2)热阻:理想情况下应尽可能低,以保持设备低于其工作温度;

3)导电性:通常是基于聚合物或聚合物填充的不导电材料;

4)相变温度:固体向液体转变,界面材料填充空隙,保证所有空气被排出的温度;

5)粘度:相变温度以上的相变材料粘度应足够高,以防止在垂直方向放置时界面材料流动滴漏;

6)工作温度范围:必须适应应用环境;

7)压力:夹紧产生的安装压力可以显著改善TIM的性能,使其与表面的一致性达到最小的接触电阻;

8)排气:当材料暴露在高温和/或低气压下时,这种现象是挥发性气体的释放压力;

9)表面光洁度:填充颗粒影响着界面的压实和润湿程度,需要更好地填补了不规则表面的大空隙;

10)易于应用:容易控制材料应用的量;

11)材料的机械性能:处于膏状或液态易于分配和打印;

12)长期的稳定性和可靠性:需要在设备的整个寿命周期内始终如一地执行(如微处理器7-10年,航空电子设备和电信设备的寿命预计为数十年);13)成本:针对不同应用,在性能、成本和可制造性等因素进行综合权衡。

 

5G时代巨大数据流量对于通讯终端的芯片、天线等部件提出了更高的要求,器件功耗大幅提升的同时,引起了这些部位发热量的急剧增加。BN氮化硼散热膜是当前5G射频芯片、毫米波天线、AI、物联网等领域最为有效的散热材料,具有不可替代性。

 

     致力于解决当前我国电子封装及热管理领域面临的瓶颈技术问题,建立了国际先进的热管理解决方案及相关材料生产技术,是国内低维材料技术领域顶尖的创新型研发团队。本产品是国内首创自主研发的高质量二维氮化硼纳米片,成功制备了大面积、厚度可控的二维氮化硼散热膜,具有透电磁波、高导热、高柔性、低介电系数、低介电损耗等多种优异特性,解决了当前我国电子封装及热管理领域面临的“卡脖子”问题,拥有国际先进的热管理TIM解决方案及相关材料生产技术,是国内低维材料技术领域顶尖的创新型高科技产品。       

电池

产品的应用方向为5G通讯绝缘热管理,主要目标市场可分为终端设备,智能工业,及新能源汽车三大板块。5G技术是近年来最受瞩目的关键科技,也是国内外重点发展的核心产业之一。随着5G商用,工业4.0、智慧城市、无人驾驶等科技建设的推进,该项目已经初步形成了万亿的市场规模,并持续快速发展。 

 

新能源汽车在不改变电池系统总能量的情况下,电池系统质量降低能够有效提高其续航里程,电动汽车质量减10%,能提高续驶里程5.5%。电池系统重量在新能源汽车总重量中占有较大的比重。较传统燃油汽车而言,电动汽车核心的三电系统(电池、电机、电控)和智能化设备,使 得电动车相比同类车型电动乘用车重量增加10%-30%,电动商用车重量增加10%-15%,其中电池Pack整包占整车整备质量的18%~30%。材料迭代+结构优化,轻量化结构件。以特斯拉Model3为例,电池Pack各主要部件中,质量最大的是电芯本体(62.8%),其次为Pack下箱体 (6.2%)、模组壳体及支架(12.3%)和BMS等部件集成系统(11.1%)等。从这些部件出发,通过材料替换和结构设计优化,对电池进行轻 量化开发。Cell to Pack(CTP) :减少或去除电池“电芯-模组-整包”的三级 Pack结构的技术。目前有两种不同的技术路 线:以比亚迪刀片电池为代表的彻底取消模组 的方案;以宁德时代CTP技术为代表的小模组 组合成大模组的方案,提高了能量密度和体积 利用率。CTP中电芯热失控管理难度加大,对内部结构导热胶对模组散热的要求,以及外部隔热胶隔热阻燃的要求更高。

 

TIM热管理材料分类の紹介

概述

热管理,包括热的传导、分散、存储与转换,正在成为一门新兴的横跨物理、电子和材料等的交叉学科,在电子、电池、汽车等行业都有特定的概念和含义,其中的热管理材料发挥了举足轻重的作用,与其它控制单元协同运作保证了工作系统正常运行在适当的温度。

伴随着5G、大数据、人工智能、物联网、工业4.0、国家重大战略需求等领域的技术发展,电子器件功率密度持续攀高,更急需高效的热管理材料和方案来保证产品的效率、可靠性、安全性、耐用性和持续稳定性。热管理材料是热管理系统的物质基础,而成分、结构及加工工艺对热管理材料的核心技术指标热传导率有重大影响。

电池

图1 电子设备热管理系统

TIM热管理材料

2-1 热界面材料(Thermal Interface Material, TIM)

选择理想的热界面材料需要关注如下因素:

1)热导率:热界面材料的体热导率决定了它在界面间传递热量的能力,减少热界面材料本身的热阻;

2)热阻:理想情况下应尽可能低,以保持设备低于其工作温度;

3)导电性:通常是基于聚合物或聚合物填充的不导电材料;

4)相变温度:固体向液体转变,界面材料填充空隙,保证所有空气被排出的温度;

5)粘度:相变温度以上的相变材料粘度应足够高,以防止在垂直方向放置时界面材料流动滴漏;

6)工作温度范围:必须适应应用环境;

7)压力:夹紧产生的安装压力可以显著改善TIM的性能,使其与表面的一致性达到最小的接触电阻;

8)排气:当材料暴露在高温和/或低气压下时,这种现象是挥发性气体的释放压力;

9)表面光洁度:填充颗粒影响着界面的压实和润湿程度,需要更好地填补了不规则表面的大空隙;

10)易于应用:容易控制材料应用的量;

11)材料的机械性能:处于膏状或液态易于分配和打印;

12)长期的稳定性和可靠性:需要在设备的整个寿命周期内始终如一地执行(如微处理器7-10年,航空电子设备和电信设备的寿命预计为数十年);13)成本:针对不同应用,在性能、成本和可制造性等因素进行综合权衡。

2-1-1 热油脂(Thermal Greases)

通常由两种主要成分组成,即聚合物基和陶瓷或金属填料。硅树脂因其良好的热稳定性、润湿性和低弹性模量而被广泛应用,陶瓷填料主要使用如氧化铝、氮化铝、氧化锌、二氧化硅和铍的氧化物等,常用的金属填料如银和铝。将基础材料和填料混合成可用于配合表面的糊状物,当应用在“粗糙”的表面被压在一起时,油脂会流进所有的空隙中以去除间隙空气。

 

2-1-2 相变材料(Phase Change Materials, PCM)PCM传统上是低温热塑性胶黏剂,通常在50-80°C范围内熔化,并具有多种配置,以增强其导热性;基于低熔点合金和形状记忆合金的全金属相变材料已经有研究发展。相变材料通常设计为熔点低于电子元件的最高工作温度。热垫(Thermal Pads)热垫的关键是它们改变物理特性的能力。在室温下,它们是坚固的,容易处理,当电子元件达到其工作温度时,相变材料变软,随着夹紧压力,它最终开始像油脂一样流入接头的空隙中,该材料填补了空气间隙和空隙,改善了组件和散热器之间的热流。相比于油脂材料热垫不受泵出效应和干问题困扰。低熔点合金(Low Melting Alloys, LMAs)基于低熔点合金(或称为液态金属)的相变热界面材料,需要在低于电子元件工作温度的液态状态下才能流入所有的表面边缘。低熔点合金具有优异的导热、导电性,而且性质稳定、常温下不与水反应,不易挥发、安全无毒。通过不同的配方可实现不同熔点、不同粘度、不同热导率/电导率,以及不同物理形态的液态金属材料。铋、铟、镓和锡基合金(如镓铝合金、镓铋合金、镓锡合金、镓铟合金)是最常用的合金,通常不使用有毒性和环境问题的镉、铅和汞基合金。形状记忆合金(Shape Memory Alloys, SMA)将一种或多种形状记忆合金颗粒分散在热油脂中,并在设备工作温度下应用于热源和散热器之间的界面,研究表明形状记忆合金增强了电子器件与散热器之间的热接触。在电子器件使用过程中,温度的升高使形状记忆合金由低温马氏体相变为高温奥氏体相变。片状剥离粘土(Exfoliated Clay)将一种或多种聚合物、导热填料和剥离粘土材料组成一种相变材料,在粘土剥离成热界面材料的过程中,粘土颗粒弥散成长径比大于200且表面积大的片状结构。由于高长径比,只需要少量颗粒小于10wt%的粘土颗粒就能显著提高TIM的热性能;也有人认为,这些粒子减缓了氧气和水通过界面材料的扩散和减慢了挥发性组件的释放速度,从而减少了泵出和干出,提高了TIM的可靠性和性能。熔丝/不熔的填料(Fusible/Non-Fusible Fillers)将硅树脂等聚合物与可熔性填料(如焊料粉末)结合而成的混合物TIM,在固化过程中,焊料颗粒回流融合在一起形成高导热网络结构。还可以在相变材料中添加难熔填料,以形成易熔和难熔填料的混合物,从而增强TIM的机械性能。当热通过渗透(即点对点的颗粒接触)传导时,不可熔颗粒也会增加基体的热导率。测试的非易熔颗粒填料材料包括氧化锌、铝、氮化硼、银、石墨、碳纤维、金刚石和金属涂层填料,如金属涂层碳纤维或金属涂层金刚石,在热界面材料中,推荐易熔填料比例为60-90wt%和非易熔填料比例为5-50wt%。

 

2-1-3 热传导弹性体(Thermally Conductive Elastomers)热传导弹性体(或称为凝胶,Gels)通常由填充有热传导陶瓷颗粒的硅弹性体组成,可以用编织玻璃纤维或电介质膜等增强机械强度。弹性体通常用于需要电绝缘的设备中,弹性材料的TIMs不像油脂可自由流动,为了符合表面的不规则性,需要足够的压缩载荷来变形。在低压力下,弹性体不能填充表面之间的空隙,热界面电阻高;随着压力的增加,弹性体填充了更多的微观空隙,热阻减小。若组装完成,就需要永久性的机械紧固件来保持连接,所获得的热阻取决于厚度、夹紧压力和体积导热系数。

 

2-1-4 碳基热界面材料(Carbon Based TIMS)碳纤维/纳米纤维(Carbon Fibre/Nano-Fibre)通过精密切割连续的高导热碳纤维束和静电植绒纤维排列在基材上,并用一层薄薄的未固化粘合剂固定形成一个天鹅绒一样的结构。基材包括金属箔、聚合物和带有粘合剂的碳片,如硅树脂、环氧树脂和陶瓷粘合剂纤维,它们可以独立弯曲以跨越局部间隙,同时需要较低的接触压力以确保每根纤维都能接触两个表面。石墨片(Graphite Flakes)把蠕虫石墨在没有粘合剂的情况下压缩在一起,形成一个有粘性的高纯度石墨薄片,这些柔性材料最初是用于流体密封的垫片(如内燃机的封头垫片),由于石墨片材料具有天然的多孔性,将其浸渍矿物油或合成油等聚合物可用于开发特定等级的高性能柔性石墨片用于TIM应用。碳纳米管(Carbon Nanotubes)结合碳纳米管结构及导热特性,它在热管理技术中潜在的应用方向主要包括:(1) 将碳纳米管作为添加剂改善各种聚合物基体内的热传递网络结构,进而发展高性能导热树脂、电子填料或黏合剂;(2) 构建自支撑碳纳米管薄膜结构, 通过调制碳纳米管取向分布实现不同方向的传热;(3) 发展碳纳米管竖直阵列结构,通过管间填充、两端复合实现热量沿着碳纳米管高热导率的轴向方向传输,以期为两个界面间热的输运提供了有效的通道开发高性能[3]。最常见的基于碳纳米管TIMs主要分为三类,按照制造复杂性的顺序排列如下:碳纳米管和碳纳米管与金属颗粒在聚合物基体中的均匀混合,碳纳米管在衬底上的垂直排列生长,以及在芯片和热分布器之间的两面排列生长。在碳纳米管TIMs中,碳纳米管各向异性的结构物性特点及与其它材料接触界面热阻过大的问题是需要研究者们重点关注研究的方向。电子装置的总热阻通常包括装置本身对环境的热耗散和TIM之间的接触热阻。而功率损耗的增加是一种趋势,将需要具有更高性能、最低热阻和长期可靠性的热界面材料。

 

石墨烯(Graphene)石墨烯热界面材料主要以石墨烯或石墨烯与碳纳米管、金属等复合作为导热填料,材料基体主要以环氧树脂(导热胶黏剂)为主要研究方向,其它基体如硅油、矿物油、硅橡胶、聚丙烯酸酯、聚乙烯、聚氨酯等。石墨烯作为导热填料的原料主要包括石墨烯片、剥离膨胀石墨烯片层、单层和多层石墨烯、单壁碳纳米管和石墨烯、多壁碳纳米管和石墨烯、联苯胺功能化石墨烯、石墨烯和银颗粒及氧化石墨烯等添加形式。单层或少层石墨烯还可以用于高功率电子器件散热,如将化学气相沉积(CVD)法制备的石墨烯转移到高功率芯片上。其散热效果取决于石墨烯片的大小及层数,且在转移过程中易引入杂质或产生褶皱和裂纹,也会影响石墨烯散热效果。提高CVD法制备的石墨烯质量和优化转移方法减少其转移过程中的损坏,或直接将石墨烯生长在功率芯片表面,是提高石墨烯散热效果的主要方法。将石墨烯制备成宏观薄膜应用于热管理中也是一种重要的途径,主要方法有:将液相剥离石墨烯经过旋涂、滴涂、浸涂、喷涂和静电纺丝等方式成膜;将氧化石墨烯通过高温还原或者化学还原成膜;将石墨烯和碳纤维复合成膜;或者将石墨烯薄膜制备成三维形状成膜等。石墨烯需要和器件基板接触,因此减少石墨烯薄膜和基板间的接触热阻是石墨烯热管理应用必须考虑的问题,如采用共价键、功能化分子等方式。石墨烯薄膜性能和价格有优势才能取代目前主流的石墨膜(PI)散热片,这对石墨烯薄膜产业化是一个极大的挑战。

 

封装材料
 

电子封装材料是半导体芯片与集成电路连接外部电子系统的主要介质,对电子器件的使用影响重大。理想的电子封装材料应满足如下性能要求:(1)高的热导率,保证电子器件正常工作时产生的热量能及时散发出去;(2)热膨胀系数需要与半导体芯片相匹配,避免升温和冷却过程中由于两者不匹配而导致的热应力热应力损坏;(3)低密度,用在航天、军事等方面,便于携带;(4)综合的力学性能,封装材料对电子元器件需起到支撑作用。

电池

图2 典型封装材料的热膨胀系数及热导率与密度比值3-1  焊料

铅锡焊料由于熔点低、性价比高等特点成为低温焊料中最主要的焊料系列,但由于所含铅的比例高给环境带来了严重的污染,世界各国都在对性能相近或更高的无铅焊料进行重点研究。

新的元素添加到基于Sn体系中有如下基本要求:1)降低纯锡表面张力,提高润湿性;2)使焊料和基体之间通过扩散快速形成金属间化合物;3)提高Sn的延性;4)防止b-Sn转变为a -Sn,导致不必要的体积变化,降低焊料的结构完整性和可靠性;5)在液相可以转变为两种或两种以上固相的情况下,用共晶或近共晶成分保持熔点在183℃左右;6)改善机械性能(如蠕变、热-机械疲劳、振动和机械冲击、剪切和热老化);7)防止锡晶须过度生长。

已被人们研究的可替代Sn-Pb体系中铅的金属有Ag、Bi、Cd、Cu、In、Sb、Zn、Al等,主要被研究开发的合金体系有:Sn-Ag-Cu、Sn-Cu、Sn-Ag、Sn-Ag-Cu-Bi、Bi–In、Sn–In、Sn –Bi、Sn–Bi–In、Sn–Zn–Bi、Sn–Zn等系列,另外活性纳米粒子(如Co、Ni、Pt、Pd、Al、P、Cu、Zn、Ge、Ag、In、Sb、Au、TiO 2、SiC、Al2O3、SWCNT、SiO2、Cu–Zn、Cu6Sn5、Ag3Sn等)的添加可以改变焊料的微观结构、熔化温度、润湿性和机械性能。

无论在学术研究还是工业应用,由于高或低的熔点、高界面生长、低润湿性、低耐蚀性和成本等问题,很难用任何一种焊料合金来代替所有的Sn-Pb焊料。现实的解决方案可能是通过与其他合金元素相结合来进行适当的应用,或者通过研究焊料合金的物理冶金和加工条件,改善焊料的微观结构和可靠性,及寻找具有良好重复性的工业规模合成路线等。

3-2 聚合物基复合材料

导热聚合物材料的研究主要集中在填充型导热聚合物材料方向,

聚合物基体主要有:HDPE、UHMWPE、LCP、POM、LDPE、EVA、PPS、PBT、PTFE、PA66、PA6、PEEK、PSU、PMMA、PC、TPU、ABS、PVC、PVDF、SB、SAN、PET、PS、PVDC、PIB、PP、PI;

导热填料类型主要有:(1)金属类,如铜、银、金、镍和铝等;(2)碳类,如无定型碳、石墨、金刚石、碳纳米管和石墨烯等;(3)陶瓷类,如氮化硼(BN)、氮化铝(A1N)、氮化硅(Si3N4)、碳化硅(SiC)、氧化镁(MgO)、氧化铍(BeO)、氧化铝(Al2O3)、氧化锌(ZnO)、氧化硅(SiO2)等。填料的添加量、形状、尺寸、混合比例、表面处理及取向、团聚、网络结构等都对聚合物基复合材料的热导率有很大的影响。

聚合物基复合材料有如下特性:1)可通过选择适当的填料来控制电气绝缘和电气传导;2)易加工的整体零件或复杂的几何形状;3)重量轻;4)耐腐蚀;5)若使用柔性聚合物,则须符合相邻粗糙表面的几何形状;6)聚合物复合材料的回弹性会引起振动阻尼。聚合物基复合材料不仅应用于电子封装,还应用于LED器件、电池和太阳电池等。

3-2 金属基复合材料

金属基复合材料通过改变增强相种类、体积分数、排列方式或复合材料的热处理工艺,能够实现热导率高、热膨胀系数可调的功能,并综合金属基体优良的导热性、可加工性和增强体高导热、低热膨胀的优点,能够制备出热物理性能与电子器件材料相匹配的封装材料。

金属基复合材料导热性能的主要影响因素为增强体和金属基体的物性,如种类、含量、形状、尺寸及纯度等。目前工艺成熟且性能稳定得到广泛应用的是高体积分数SiC颗粒增强铝基复合材料(热导率达200W/(m·K)、热膨胀系数为7.8×10-6K-1,密度仅为3.0g/cm3),而为了开发热导率更高的金属基复合材料,目前主要的研究方向是金刚石、石墨烯等增强的铝基、铜基和银基复合材料,但此类金属基体与金刚石或石墨烯之间润湿性较差,界面效应成为制约其性能的瓶颈。

3-2-1 单项增强体金属基复合材料

纤维:包括碳纤维增强铜基和铝基复合材料(Cf/Cu、Cf/Al、),碳化硅纤维增强铜基复合材料(SiCf/Cu),以及金刚石纤维增强铝基复合材料,材料体中纤维以空间随机分布、平面随机分布和单向分布。

片体:如石墨片、石墨烯纳米片等二维平面结构材料。

颗粒:常见的有石墨颗粒、硅颗粒、碳化硅、金刚石等,其中Si/Al,SiC/Al广泛应用于电子封装工业。

网络互穿:增强相与基体相在空间都保持连续分布,从而可弱化复合界面对材料热学性能的显著影响,如C/Al、(SiC+C)/Al、CNTs/Cu等复合材料。

3-2-2 混杂增强体金属基复合材料

颗粒-颗粒:包括双粒度同质颗粒、双粒度异质颗粒和等粒径异质颗粒等,如双粒度SiC/Al、等粒径(Dia+SiC)/Al等复合材料。

颗粒-片体:理论上有望弥补片体各向异性和颗粒增强效率低,同时发挥片体在半导体器件平面方向上的低膨胀与颗粒高导热的作用,或者实现片体在平面方向上的高导热与颗粒抑制热膨胀的作用相匹配,如石墨片+碳化硅浸渗液相铝合金复合材料。

纳米材料:不仅有优异的力学性能、极低的热膨胀系数,而且具有很高的导热性能,如碳纳米纤维、碳纳米管、石墨烯纳米片、纳米金刚石等。利用粉末冶金方法、片状粉末冶金方法、选择性涂布浸渍、金属箔冷轧退火等工艺,可制备如纳米项增强材料如碳纳米管与金属粉末(铜粉末)、片状粉末冶金(CNTs/Al、CNTs/Cu及GNS/Al)等复合材料。纳米相表面金属化有望改善由纳米相丰富的比表面积和金属基体稳定的化学性质带来的界面结合困难问题,常用方法有(电)化学镀铜、镀镍等]。 

3-3相变材料

相变材料(Phase Change Materials, PCM)是利用物质在相变(如凝固/熔化、凝结/汽化、固化/升华等)过程发生的相变热来进行热量的储存和利用的潜热存储材料。

电池

图3 储能材料的分类

PCM根据其化学成分可归类为有机和无机相变材料。有机相变材料主要由烷烃制成,包括石蜡、脂肪醇 、脂肪酸、蜡及烷烃基合金等;无机相变材料包括熔盐、盐水合物和金属等;另一类相变材料包括有机-无机、无机-无机和有机-有机化合物的共晶混合物。

无机共晶混合物适用于高温热存储系统,如集中太阳能热电厂;有机共晶体适用于低温储热,如维持建筑温度,用于电池组的热管理系统等;石蜡、脂肪酸和脂肪醇等有机化合物熔点低(10〜60℃),适用于家用热存储。直链烃石蜡具有熔融热高、低蒸气压、化学惰性、无相分离的自发成核等理想特性,是目前研究最多的有机PCM 之一,但石蜡的热导率仅为0.2W/(m·K ),增加了其熔化时间以及蓄热系统的充热时间,因此向石蜡中加入高热导率填料形成PCM复合材料是研究的一个热点。

 

PCM材料要注意的问题:

1、传统的PCM性质分析方法局限性:1)分析少量样本(1-10毫克),尽管PCMs的某些行为取决于其数量;2)分析仪器复杂而昂贵;3)无法直观观察到相变。

2、长期稳定性:1)PCM-容器系统的稳定性,储存材料和容器的长期稳定性不足是限制潜热储存广泛使用的一个问题。一个相关的方面是这些系统的使用寿命,以及它们在不降低性能的情况下能够承受的循环次数;2)材料腐蚀,大多数关于盐水合物腐蚀试验的文献都是用稀释的盐水合物进行的,通常在化学工业中使用,只有少数结果是基于对实验装置的观察;3)材料封装,如不同的几何形状,有机共晶的结晶过程,不同组分比例的包封,封装浓缩空隙,微胶囊化等。

 

隔热材料

隔热材料主要是指具有绝缘性能、对热流可起屏蔽作用的材料或材料复合体,通常具有质轻、疏松、多孔、导热系数小的特点,工业上广泛用于防止热工设备及管道的热量散失,或者在冷冻和低温条件下使用,因此又被称为保温或保冷材料,同时由于其多孔或纤维状结构具有良好的吸声功能,也广泛用于建筑行业。
 

4-1 材质分类

隔热材料依据材质可分为无机隔热材料、有机隔热材料、金属及其夹层隔热材料。

无机材料:(1)天然矿物,如石棉、硅藻土等;(2)人造材料,如陶瓷棉、玻璃棉、多孔类隔热砖和泡沫材料。此类材料具有不腐烂、不燃烧、耐高温等特点,多用于热工设备及管道保温。

有机材料:(1)天然有机类,如软木、织物纤维、兽毛等;(2)人造或合成有机类,如人造纤维、泡沫塑料、泡沫橡胶等;(3)蜂窝材料,如蜂窝纸、蜂窝板。此类材料具有导热系数极小、耐低温、易燃等特点,适用于普冷下的保冷材料。

金属及其夹层隔热材料:(1)金属材料,如铜、铝、镍等箔材;(2)金属箔与有机或无机材料的夹层(或蜂窝)复合材料。此类材料具有很高的红外辐射反射率,主要应用于航空航天中的高温热防护领域。

4-2  形态分类

隔热材料依据材料形态分为多孔隔热材料、纤维状隔热材料、粉末状隔热材料和层状隔热材料。

多孔材料又称泡沫隔热材料,具有质量轻、绝缘性能好、弹性好、尺寸稳定、耐稳定性差等特点,主要有泡沫塑料、泡沫玻璃、泡沫橡胶、硅酸钙、轻质耐火材料等。

纤维状隔热材料又可分为有机纤维、无机纤维、金属纤维和复合纤维等,工业上主要应用的是无机纤维,如石棉、岩棉、玻璃棉、硅酸铝陶瓷纤维、晶质氧化铝纤维等。

粉末状隔热材料主要有硅藻土、膨胀珍珠岩及其制品,主要应用在建筑和热工设备上。

4-3 新型隔热材料

4-3-1 气凝胶保温隔热材料

气凝胶通常是指以纳米量级超微颗粒相互聚集构成的纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料,孔隙率高达80%~99.8%,密度低至0.003g/cm3,常温热导率低于空气,是一种较为理想的轻质、高效隔热材料。

气凝胶隔热材料主要包括SiO2气凝胶、ZrO2气凝胶、Al2O3气凝胶、Si-C-O气凝胶及碳基气凝胶(如石墨烯气凝胶)等,在建筑、石化、航空航天等领域有广泛使用。如民用领域的气凝胶透明玻璃墙体、硅气凝胶夹芯板及柔性气凝胶隔热毡等,广泛应用于管道、飞机、汽车等保温体系中;航天航空领域的陶瓷纤维-气凝胶复合隔热瓦等。

4-3-2 碳质保温隔热材料

碳毡是一种低强碳纤维,主要可由聚丙烯腈纤维、沥青(石油沥青和煤沥青)碳纤维、酚醛纤维、纤维素(即粘胶人造丝)纤维等制成,其导热系数小、热容量低、密度小、线膨胀系数小、耐高温、耐热冲击强、耐化学腐蚀性强、高纯无污染等优异特性,主要应用于晶体硅铸锭炉、柴油车尾气过滤器用陶瓷烧结、金属热处理、稀土类磁性材料制造、半导体晶圆生产设备、真空电阻炉、感应炉、烧结炉、热处理炉等。

4-3-3 复合保温隔热材料

复合硅酸盐保温材料具有可塑性强、导热系数低、耐高温、浆料干燥收缩率小等特点,主要有硅酸镁、硅镁铝、稀土复合材料等。海泡石保温隔热材料是复合硅酸盐保温材料中的佼佼者,硅酸铝耐火纤维可以制作薄层陶瓷纤维隔热层,或者纤维垫、纤维毡、纤维板、纤维纸、纤维绳及织物等,可广泛用于航空航天领域等。

隔热保温材料是节约能源的一个有效手段,开发科技含量高、性能优良且稳定、使用寿命长、制造成本低、环境友好的隔热材料是未来发展的重点和热点,其中憎水性保温隔热材料(如硅酸盐材料)、泡沫类保温隔热材料(如应用于核工业的泡沫陶瓷、建筑隔热的泡沫玻璃等)、环境友好型保温隔热材料(如利用粉煤灰制备热工窑炉用隔热材料)等是主要的发展方向。

 

热电材料
 

电池图4 热电制冷器件

热电制冷器件是利用热电材料的Peltier效应,可以在通入电流的条件下将热从高温端转移到低温端,实现电到热的转化,提高电子模块封装的冷却效果,从而减少芯片结温或适应更高的功耗。理想的热电材料需要高的无量纲优值(zT),即低的热导率、高的功率因子;热电制冷器件具有小巧、无噪音、没有活动部件等优势、还可以进行主动温度控制,是固态激光器、焦平面特测器阵列等必备冷却装置,还可以利用Peltier效应的逆效应Seebeck效应将汽车尾气等热能转化为电能[3]。

热电制冷器件可调节的热流量大小有限,能效比(Coefficient of Performance,COP)要比传统的冷凝系统低,并依赖于应用环境(通常小于1),意味着热电制冷器件所消耗的电能相当/或大于元器件被冷却的功率耗散,这些缺点主要是由于热电材料本身的局限所致,所以热电制冷器件目前仅应用在相对较低的热流量场合。为了改善热电制冷器件的性能,开发高性能的热电材料是业界主要的研究方向之一。

电池

图5 n型(a)及 P型(b)典型热电材料的无量纲优值 zT 

小结

从工程应用的角度而言,对于热管理材料的要求是多方面的。例如,希望热界面材料在具有高热导率的同时保持高的柔韧性和绝缘性;对于高导热封装材料,则希望高的热导率和与半导体器件相匹配的热膨胀率;对于相变储热材料,则希望高的储热能力和热传导能力。为了同时兼顾这些特性,将不同的材料复合化在一起从而达到设计要求的整体性能是热管理材料的发展趋势,性能主要影响因素有增强体的物性(热导率、热膨胀率、体积分数、形状及尺寸)、基体的物性(热导率和热膨胀率等)、增强体/基体的界及增强体在基体中的空间分布(弥散或连续分布)。
近来人们研究发现,材料的非均匀复合构型(如混杂、层状、环状、双峰、梯度、多孔、双连续/互穿网络、分级、谐波等)更有利于发挥复合设计的自由度和复合材料中不同组元间的协同耦合效应,复合界面(亚微米尺度界面层)的微观结构精细调控(化学成分、结合状态、微观结构及物相组成等)影响着界面处产生的界面应力、界面化学反应、界面组分偏析、界面结晶等界面效应,导致界面处热及力学性能的不同,从而显著影响到复合材料的热导率及热膨胀率,这些已经成为热管理材料复合化研究的主要方向。

 

胶水(胶粘剂)の紹介

胶粘剂的组成

现在使用的胶粘剂是采用多种组分合成树脂胶粘剂,单一组分的胶粘剂已不能满足使用中的要求。合成胶粘剂由主剂和助剂组成,主剂又称主料、基料或粘料;助剂有固化剂、稀释剂、增塑剂、填料、偶联剂、引发剂、增稠剂、防老剂、阻聚剂、稳定剂、络合剂、乳化剂等,根据要求与用途还可以包括阻燃剂、发泡剂、消泡剂、着色剂和防霉剂等成分。
1.主剂主剂是胶粘剂的主要成分,主导胶粘剂粘接性能,同时也是区别胶粘剂类别的重要标志。主剂一般由一种或两种,甚至三种高聚物构成,要求具有良好的粘附性和润湿性等。2.助剂为了满足特定的物理化学特性,加入的各种辅助组分称为助剂,例如:为了使主体粘料形成网型或体型结构,增加胶层内聚强度而加入固化剂(它们与主体粘料反应并产生交联作用);为了加速固化、降低反应温度而加入固化促进剂或催化剂;为了提高耐大气老化、热老化、电弧老化、臭氧老化等性能而加入防老剂;为了赋予胶粘剂某些特定性质、降低成本而加入填料;为降低胶层刚性、增加韧性而加入增韧剂;为了改善工艺性降低粘度、延长使用寿命加入稀释剂等。包括:
1)固化剂2)增韧剂3)稀释剂4)填料5)改性剂

胶粘剂的分类

(一)、按成分来分:

胶粘剂种类很多,比较普遍的有:脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、聚丙烯酸树脂胶粘剂,聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂、环氧树脂胶粘剂、合成胶粘剂等等。

1、有机硅胶粘剂

是一种密封胶粘剂,具有耐寒、耐热、耐老化、防水、防潮、伸缩疲劳强度高、永久变形小、无毒等特点。近年来,此类胶粘剂在国内发展迅速,目前我国有机硅胶粘剂的原料部分依靠进口。

2、聚氨酯胶粘剂

能粘接多种材料,粘接后在低温或超低温时仍能保持材料理化性质,主要应用于制鞋、包装、汽车、磁性记录材料等领域。

3、聚丙烯酸树脂

主要用于生产压敏胶粘剂,也用于纺织和建筑领域。

建筑用胶粘剂:主要用于建筑工程装饰、密封或结构之间的粘接。

4、 热熔胶粘剂

根据原料不同,可分为EVA热熔胶、聚酰胺热熔胶、聚酯热熔胶、聚烯烃热熔胶等。目前国内主要生产和使用的是EVA热熔胶。聚烯烃系列胶粘剂主要原料是乙烯系列、SBS、SIS共聚体。

5、环氧树脂胶粘剂
 

可对金属与大多数非金属材料之间进行粘接,广泛用于建筑、汽车、电子、电器及日常家庭用品方面

6、脲醛树脂、酚醛、三聚氰胺-甲醛胶粘剂

主要用于木材加工行业,使用后的甲醛释放量高于国际标准。

木材加工用胶粘剂:用于中密度纤维板、石膏板、胶合板和刨花板等

7、合成胶粘剂
 

主要用于木材加工、建筑、装饰、汽车、制鞋、包装、纺织、电子、印刷装订等领域。目前,我国每年进口合成胶粘剂近20万吨,品种包括热熔胶粘剂、有机硅密封胶粘剂、聚丙烯酸胶粘剂、聚氨酯胶粘剂、汽车用聚氯乙烯可塑胶粘剂等。同时,每年出口合成胶粘剂约2万吨,主要是聚醋酸乙烯、聚乙烯酸缩甲醛及压敏胶粘剂。

 

(二)、按用途来分:

1、密封胶粘剂

主要用于门、窗及装配式房屋预制件的连接处。高档密封胶粘剂为有机硅及聚氨酯胶粘剂,中档的为氯丁橡胶类胶粘剂、聚丙烯酸等。在我国,建筑用胶粘剂市场上,有机硅胶粘剂、聚氨酯密封胶粘剂应是今后发展的方向,目前其占据建筑密封胶粘剂的销售量为30%左右。

2、建筑结构用胶粘剂

主要用于结构单元之间的联接。如钢筋混凝土结构外部修补,金属补强固定以及建筑现场施工,一般考虑采用环氧树脂系列胶粘剂。

3、汽车用胶粘剂
 

分为4种,即车体用、车内装饰用、挡风玻璃用以及车体底盘用胶粘剂。

目前我国汽车用胶粘剂年消耗量约为4万吨,其中使用量最大的是聚氯乙烯可塑胶粘剂、氯丁橡胶胶粘剂及沥青系列胶粘剂。

4、包装用胶粘剂
 

主要是用于制作压敏胶带与压敏标签,对纸、塑料、金属等包装材料表面进行粘合。纸的包装材料用胶粘剂为聚醋酸乙烯乳液。塑料与金属包装材料用胶粘剂为聚丙烯酸乳液、VAE乳液、聚氨酯胶粘剂及氰基丙烯酸酯胶粘剂。

5、电子用胶粘剂
 

消耗量较少,目前每年不到1万吨,大部分用于集成电路及电子产品,现主要用环氧树脂、不饱和聚酯树脂、有机硅胶粘剂。用于5微米厚电子元件的封端胶粘剂我们可以自己供给,但3微米厚电子元件用胶粘剂需从国外进口。

6、制鞋用胶粘剂

年消费量约为12.5万吨,其中氯丁橡胶类胶粘剂需要11万吨,聚氨酯胶粘剂约1.5万吨。由于氯丁橡胶类胶粘剂需用苯类作溶剂,而苯类对人体有害,应限制发展,为满足制鞋业发展需求,采用聚氨酯系列胶粘剂将是方向。

 

(三)、按物理形态来分:
 

1、密封胶 

1.1   按密封胶硫化方法分类 

(1)湿空气硫化型密封胶 

此类密封胶系列用空气中的水分进行硫化。它主要包括单组分的聚氨酯、硅橡胶和聚硫橡胶等。其聚合物基料中含有活性基团,能同空气中的水发生反应,形成交联键,使密封胶硫化成网状结构。 

(2)化学硫化型密封胶 

双组分的聚氨酯、硅橡胶、聚硫橡胶、氯丁橡胶和环氧树脂密封胶都属于这一类,一般在室温条件下完成硫化。某些单组分的氯磺化聚乙烯和氯丁橡胶密封胶以及聚氯乙烯溶胶糊状密封胶则须在加热条件下经化学反应完成硫化。 

(3)热转变型密封胶 

用增塑剂分散的聚氯乙烯树脂和含有沥青的橡胶并用的密封胶是两个不同类型的热转变体系。乙烯基树脂增塑体在室温下是液态悬浮体,通过加热转化为固体而硬化;而橡胶-沥青并用密封胶则为热熔性的。 

(4)氧化硬化型密封胶 

表面干燥的嵌逢或安装玻璃用密封胶主要以干性或半干性植物油或动物油为基料,这类油料可以是精制聚合的、吹制的或化学改性的。 

(5)溶剂挥发凝固型密封胶 

这是以溶剂挥发后无粘性高聚物为基料的密封胶。这一类密封胶主要有丁基橡胶、高分子量聚异丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡胶等密封胶。

1.2  按密封胶形态分类 

(1)膏状密封胶 

此类密封胶基本上用于静态接缝中,使用期一般为2年或2年以上。通常采用3种主体材料:油和树脂、聚丁烯、沥青。 

(2)液态弹性体密封胶 

  此类密封胶包括经硫化可形成真正弹性状态的液体聚合物,它们具有承受重复的接缝变形能力。弹性体密封胶所使用的聚合物弹性体包括液体聚硫橡胶、巯端基聚丙烯醚、液体聚氨酯、室温硫化硅橡胶和低分子丁基橡胶等。该类密封胶通常配合成两个组分,使用时将两个组分混合。 

(3)热熔密封胶 

热熔密封胶又叫热施工型密封胶。指以弹性体同热塑性树脂掺合物为基料的密封胶。这类密封胶通常在加热(150~200℃)情况下经一定口型模型直接挤出到接缝中。热施工可改进密封胶对被粘基料的湿润能力,因此对大多数被粘基料具有良好的粘接力。一经放入适当位置,就冷却成型或成膜,成为收缩性很小的坚固的弹性体。热施工密封胶的主体材料主要是异丁烯类聚合物、三元乙丙橡胶和热塑性的苯乙烯嵌段共聚物。它们通常同热塑性树脂如EVA、EEA、聚乙烯、聚酰胺、聚酯等掺合。 

(4)液体密封胶 

该类密封胶主要用于机械接合面的密封,用以代替固体密封材料即固体垫圈以防止机械内部流体从接合面泄漏。该类密封胶通常以高分子材料例如橡胶、树脂等为主体材料,再配以填料及其它组分制成。液体密封胶通常分不干性粘着型、半干性粘弹性、干性附着型和干性可剥型等4类。根据具体使用部位及要求选择。

 

1.3   按密封胶施工后性能分类 

(1)固化型密封胶 

(2)非固化型密封胶 

2、按胶粘剂硬化方法分类 

低温硬化代号为a;常温硬化代号为b;加温硬化代号为c;适合多种温度区域硬化代号为d;与水反应固化代号为e;厌氧固化代号为f;辐射(光、电子束、放射线)固化代号为g;热熔冷硬化代号为h;压敏粘接代号为i;混凝或凝聚代号为j,其他代号为k。

3、按胶粘剂被粘物分类 

4、胶水状态

无溶剂液体代号为1;2有机溶剂液体代号为2;3水基液体代号为3,4膏状、糊状代号为4,5粉状、粒状、块状代号为5;6片状、膜状、网状、带状代号为6;7丝状、条状、棒状代号为7。

5、其它胶粘剂: (不常用到)

金属结构胶、聚合物结构胶、光敏密封结构胶、其它复合型结构胶 

 

胶水(胶粘剂)技术原理の简介

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

电池

常用胶粘剂的固化形式

为了便于胶粘剂对被粘物面的浸润,胶粘剂在粘接之前要制成液态或使之变成液态,粘接后,只有变成固态才具有强度。通过适当方法使胶层由液态变成固态的过程称为胶粘剂的固化。而不同的胶粘剂的固化形式则是不同的,接下来,我们就来了解一下常用胶粘剂的固化形式有哪些?

方法/步骤

1 溶液型胶粘剂的固化

2 乳液型胶粘剂的固化

3 热熔胶的固化

4 增塑糊型胶粘剂的固化

5 反应型胶粘剂的固化

电池

电池

01 胶粘剂,实现动力电池持久动力的“肌膜组织”

动力电池是电动汽车的心脏,胶粘剂等材料是实现心脏持久动力的“肌膜组织”。电芯成组装配和Pack组装是动力电池生产线中的重要环节,都会涉及到直接影响动力电池导热性能、耐老化强度、电气绝缘性、阻燃性和使用寿命的胶粘剂材料。


 

电池

动力电池组装。来源:昌德胶业

电芯层面,一方面需要隔绝外界温度变化对电芯的影响,一方面需降低相邻电芯互相的热量影响,隔热材料的隔热性、耐热性和阻燃性都是重要改进方向。极耳胶带需要具有耐高温,耐热,耐锂离子电池电解液,耐溶剂,高电气绝缘性,粘着力适宜和贴服性以及再剥离不残胶等特性。


 

电池

电芯用胶。来源:汉高官网,中信证券

 

传统的电池模组热管理,一般由电池模组、热管理系统、电池管理系统(BMS)、电气系统及结构件组成,每个电池模组又包含一组单个电芯。这一设计有助于对电池模组进行控制、监测和维修。此外还能为电池提供碰撞和环境保护,在模组之间和模组周围形成电气隔离,在热失控的情况下有助于防止火势蔓延。不同性能的胶粘剂分别用来提升动力电池的机械强度、热管理性能、防外界干扰性能。

电池

电池模组用胶。来源:汉高,中信证券

电池包层面,应用的胶粘剂主要有结构胶(导热与绝缘)、灌封和密封胶(密封和导热)、功能性胶(导热和导电)几种。结构胶主要用于结构件的固定和上下壳体与电芯的连接,密封胶主要用于壳体的密封保护,灌封胶主要起到灌封和导热作用,而功能性胶拥有导电、导热等性能,是动力电池安全管理重要组成部分。

电池

电池包用胶。来源:汉高官网,中信证券

02  安全事故频发,热管理需求持续提升。

“热失控”是电池内部出现放热连锁反应引起电池温升速率急剧变化的过热现象,发生时通常伴随着冒烟、起火、爆炸等危害。在电池组中,若局部区域电池发生的热失控事件失去控制,将扩展到周围区域的电池,引起热失控在系统内扩展而导致不可控的危害,抑制热失控尤为重要。热失控发生的诱因可分为机械滥用(碰撞、挤压、穿透等)、电滥用(外短路、过充电、过放电等)和热滥用(局部过热等)。


 

电池

电池热失控反应。来源:岩拓新材料

电池

热失控扩展典型事故。来源:锂离子电池热失控扩展特征及抑制策略研究进展,中信证券研究部

 

对抗冲击能力及震动稳定性等良好机械安全性的需求提升,是使得电动汽车内导热、隔热材料需求提升的原因之一。


 

03  结构创新和集成度的提升,带动胶及结构制件价值量提升

传统电芯-电池模组-电池包集成设计中,模组存在机械连接较方便、无需结构胶等胶粘剂,但横梁和纵梁占用许多空间,螺栓等附件增加了重量,很大程度上限制了电池包容量和能量密度的提升.

Cell to Pack(CTP):减少或去除电池“电芯-模组-整包”的三级Pack结构的技术。目前有以比亚迪刀片电池为代表的彻底取消模组的方案和以宁德时代CTP技术为代表的小模组组合成大模组等两种不同的技术路线方案。CTP中电芯热失控管理难度加大,对内部结构导热胶对模组散热的要求,以及外部隔热胶隔热和阻燃的要求更高。

电池

宁德时代CTP3.0技术。来源:宁德时代

Cell to Chassis(CTC):直接由电芯作为车身的一部分,电池包上盖与车身地板融合,取消模组设计,进一步提高系统集成效率。CTC方案中,特斯拉车辆重量减少10%,续航里程增加14%;零跑汽车综合续航增加10%。一体化使得CTB技术中结构胶强度要求提升。

 

电池

特斯拉CTC技术。来源:特斯拉

Cell to Body (CTB):车身地板集成电池上盖-电芯-托盘,将电芯集成于电池上盖成为一个整车三明治结构。车身电池一体化结构需要在壳体中加入缓冲材料。

电池

比亚迪CTB技术。来源:比亚迪

04  电池热管理需求:导热、保温、隔热三管齐下

相比于传统汽车,电动汽车由于增加了电池、电机、电控等部件,对于热管理所用胶粘剂在性能、数量上都带来了更大的市场空间。相比于传统电机,电动汽车的电机对于整体尺寸、功率密度要求更高,对胶粘剂的应用性能也提出更高要求。胶粘剂在电机中的作用主要是连接磁体和叠片,连接轴和转子,以及连接定子和外壳。不仅可以起到振动、腐蚀的保护作用,也可以缓冲定子和外壳不同的热膨胀系数而可能产生的热应力。

 

电机中的主要用胶点。

电池

电控中IGBT灌封的用胶点。

导热需求:锂离子电池充放电电流较大,散热条件较差,会引起电池内部温度升高。而车辆底盘空间有限,电池模块必须紧密排列,将导致热量堆积,且不同位置的电芯温度往往也不完全一致。离子电池工作温度在30-40℃时,温度每升高1℃,电池使用寿命越降低2个月。


 

电池

锂电池导热胶和隔热胶性能需求。来源:博詹咨询,中信证券

隔热需求:导热不畅情况下,过高的温度易导致冒烟、起火、爆炸等危险,需要在良好隔热条件的基础上保证阻燃效果。而平衡电池效率与热安全保护,需防止单体热扩散。为了防止电池单体自燃扩散至整个动力电池包,厂商一般通过控制影响(如隔热)和保持温度(如泄压、散热)两方面解决。预防阶段,隔热材料通过减少外部温差变化对电池的影响,从源头减少热失控事故;事故发生时,隔热材料可以减缓电芯爆燃散发热量对临近电芯以及整车的影响,为乘客争取逃生时间,最小化热失控事故的影响。

目前隔热材料主要以气凝胶垫、硅橡胶(陶瓷化)、阻燃泡棉、云母板为主,而有机硅因高耐热性,高弹性和成本合理或将成为主流。由于不同形状电芯的膨胀率、比表面积、热失控难易程度不同,不同公司采用不同防火隔热材料进行隔热处理。

电池

各个企业胶粘剂代表性解决方案。来源:公司公告,中信证券

2020年以来,宁德时代、中创新航、比亚迪等动力锂电池厂商纷纷应用气凝胶毡等材料提升电池包的热防控性能。主机厂也积极参与到电池PACK设计中,在隔热阻燃材料方面提出新的技术方案,如上汽荣威应用的“防火罩”产品。

电池

动力电池热管理隔热材料对比。来源:GGII,中信证券

保温需求:低温下,电池的电化学反应速率和反应深度降低,从而导致电池容量下降,动力电池宏观表现出冬季环境下电动汽车“亏电”现象。


 

05  CTP技术下的热管理

从热管理的角度来看,基于模组化的电池包通常使用至少两种热界面材料(TIM)或“填缝胶”(GF)。在液冷板的帮助下,两种填缝胶有助于调节模组的温度,确保安全高效的性能。


 

电池

方形电池构成的模组电池包结构横截面。来源:派克洛德,中信证券

基于新型CTP设计的热管理方法,可以减少一半的热界面材料,从原有模组上层电芯至模组(CTM)填缝胶和下层模组至电池包(MTP)的填缝胶变成1层电芯到冷却板的导热胶粘剂;并从原有4个接口变为现有2个接口,还去掉了模组外壳。


 

电池

无模组CTP电池包结构横截面。来源:派克洛德,中信证券

设计显著降低了电池堆的热阻,进而降低冷却板的冷却(或加热)负荷,支持使用导热率较低的填缝胶。另一方面,由于不再使用模组外壳来防止电池受到环境影响,需要导热胶拥有更严格的环境耐受性和机械性能。在CTP电池中,胶粘剂代替原来模组结构的机械连接,对于强度、柔韧性、耐老化、阻燃绝缘和导热性也有较高的性能要求。通常使用结构胶实现以上性能,为动力电池提供防护效果,并实现实现安全可靠的轻量化设计。结构胶粘剂的四种常见受力方式是拉伸、剪切、劈裂和剥离,因此要求结构胶在应对这些物理作用力时有良好的机械性能。

宁德时代指出,CTP3.0 麒麟电池开创性地取消了横纵梁、水冷板与隔热垫原本各自独立的设计,集成为多功能弹性夹层,提高系统集成效率。通过电芯大面冷却技术,

电池换热面积扩大4倍,导热性能提升50%,麒麟电池支持5分钟快速热启动及10分钟快充。在相同的化学体系、同等电池包尺寸下,麒麟电池包的电量,相比4680系统提升13%。

电池

CTP3.0 麒麟电池。来源:宁德时代值得一提的是,在极端情况时,麒麟电池电芯可急速降温有效阻隔电芯间的异常热量传导,并有效避免电池非正常工作温度造成的不可逆损伤,整体提升电芯寿命与安全。此外,CTP3.0 麒麟电池针对全生命周期电化学反应、水冷系统实车需求等进行全面模拟仿真,在多功能弹性夹层内搭建微米桥连接装置灵活配合电芯呼吸进行自由伸缩,提升电芯全生命周期可靠性。CTP技术迭代过程中,由于胶粘剂的性能同步提升,动力电池施胶总量不断递减。但高性能胶粘剂带来高单价,使得动力电池单车价值量呈递增趋势。集成度提高带来电池上盖和车身地板间减震保护与绝缘需求,绝缘缓冲垫将成为动力电池胶粘剂最大增量。同时电池安全性对封装过程中使用的密封胶提出了更高的性能需求,预计也将成为胶粘剂关注重点。以一个CTP磷酸铁锂电池包为例,通常需要导热结构胶2.5kg,无导热作用的结构胶1kg,密封胶0.7kg左右。电池

麒麟电池 CTP3.0 结构用胶点。来源:宁德时代,中信证券

07 三大应用体系,功能胶需求持续提升

结构胶:满足机械性能需求,实现安全可靠的轻量化设计。结构胶是指应用于受力结构件胶接场合,能承受较大动负荷、静负荷并能长期使用的胶粘剂。在动力电池中,主要用于粘接电芯与电芯、电芯与泡棉、电芯和模组外壳等,使电芯与模组成为一体化,满足模组的振动、冲击和跌落等要求。

 

电池

结构胶评价标准。来源:中信证券

结构胶主要有聚氨酯结构胶、丙烯酸结构胶、硅胶、环氧结构胶、UV胶和耐高温热熔胶等可分别应用于不同场景。

 

密封胶:为动力电池应对复杂使用环境提供防护。密封胶又称密封剂、密封材料,密封胶是以非定型状态嵌填接缝,并与接缝表现粘接成一体,实现接缝空封的材料。主要由基料、增塑剂、防腐剂、稳定剂、偶联剂、填料、固化剂等组成。


 

按主要成分,分为聚硫密封胶、硅酮密封胶、聚氨酯密封胶、丙烯酸酯密封胶、环氧树脂胶、氟橡胶、氯丁橡胶、丁腈橡胶,其中聚硫密封胶、硅酮密封胶、聚氨酯密封胶为目前性能最好的三大弹性密封胶。按形态分,可分为膏状密封胶、液态弹性密封胶、热熔密封胶和液体密封胶。

 

电池密封胶成分和性能对比。来源:率捷咨询,中信证券

灌封胶:兼顾密封与导热,发泡胶逐步替代。灌封胶灌注于电芯间,有效填充和保护电池,并作为辅助导热材料及时传导热量。


 

灌封胶材料主要有,环氧树脂灌封胶:单组份环氧树脂灌封胶、双组份环氧树脂灌封胶;硅橡胶灌封胶:室温硫化硅橡胶、双组份加成形硅橡胶灌封胶、双组份缩合型硅橡胶灌封胶;聚氨酯灌封胶:双组份聚氨酯灌封胶。


 

轻量化趋势下,发泡胶相较于灌封胶质量更小、抗震和隔热效果更好,逐步替代灌封胶在动力电池中的应用,灌封胶需求递减。


 

电池

三种化学体系的灌封胶性能对比。来源:博詹咨询,中信证券

导热胶主要用于完成电芯与电芯之间,以及电芯与液冷管之间的热传导,使用形式包括垫片、灌封、填充等。

导热胶主要由树脂基体(环氧树脂、有机硅和聚氨酯等)和导热填料(提高导热性,有氮化铝(AlN)、氮化硼(BN)以及氮化硅(Si3N4)、氧化铝(Al2O3)、氧化镁(MgO)、氧化锌(ZnO)等)组成)。

 

液冷模式下,导热胶有重要的辅助作用。导热系数越高的导热胶对降低电池的温升和温差越明显,电池温度分布也越均衡。由于动力电池电芯的最佳工作温度一般为20-40℃之间,导热胶的热量传导可以有效降低电芯温度和电芯间的温差,对于维护电池热管理系统的正常运行具有非常显著的效用。

 

胶带:结构固定与电气绝缘,关注胶粘剂和基材性能。常用的胶粘剂有丙烯酸酯胶粘剂、橡胶胶粘剂等;基材有BOPP、PI、PET等。


 

胶粘剂:丙烯酸酯胶粘剂具有良好的抗老化性和耐候性、较高的耐温性和良好的热稳定性,对极性表面有着良好的粘接性,起始剥离强度较低等;橡胶胶粘剂在高温下有更高的抗剪切力、良好的初粘力,但抗老化性、抗溶剂性较差。


 

对于基材,耐温性能:PI基材>PET基材>BOPP基材,基材成本:BOPP基材>PET基材>PI基材。


 

电池

在动力电池中应用的胶带概览。来源:tesa官网,中信证券

08 关注有机硅、聚氨酯及气凝胶材料

以聚氨酯和有机硅为主要成分的胶粘剂生产洁净度高,且有机硅耐高温性能佳。在能量密度与电池工作温度提升的趋势下,有机硅胶性能优异,电气绝缘、生物相容性能好、阻燃、耐腐蚀,耐辐射、耐极端温度(-70℃-250℃),是绝佳的密封、导热材料。聚氨酯胶的机械性能和耐低温性能占优。

 

有机硅胶主要应用于导热、密封等领域。有机硅橡胶因其优异的耐高低温性能,耐候性和导热性能被广泛应用于新能源汽车的动力电池组装工艺中,其具体的应用领域有PACK密封、结构粘接、结构导热、电池灌封等。

 

一体化设计带动导热结构胶需求提升,聚氨酯胶优势凸显。电池厂商在导热胶需求量大且不断降本的趋势下,有时无法选择高导热(>3.0W/m.K)的有机硅产品;同时,因电池包不断减少结构件的设计条件使得导热胶除了需要导热功能外,还需具有较高强度(大于10MPa)的粘接固定功能,因此粘接强度、经济成本具有优势的聚氨酯导热结构胶成为了众多电池厂和新能源整车厂的现实选择。


 

新能源汽车三电系统轻量化需求带动聚氨酯胶用量提升。国内低端乘用车聚氨酯用量在15~20kg左右,而高端车型的聚氨酯用量则在25kg~30kg左右。

 

环氧树脂:多种性能产品满足不同性能需求。环氧树脂胶应用于汽车不同部位的粘接;促进轻量化、车身结构设计变革,简化焊接工艺,降低成本;提高车身刚度、抗撞性能、结构耐久性,噪声、振动与声振粗糙度等整车性能。环氧树脂也用于电源、变压器、继电器、水表等各类电子元器件的灌封。

 

丙烯酸使用简便,抗冲击性好。丙烯酸可以耐受高达200°C的后加工处理和电泳漆,可以实现更高的结构粘接强度。丙烯酸胶粘剂注胶后具有出色的抗冲击、剪切和剥离强度,即使长期暴露于盐雾、潮湿、热循环等各种化学暴露环境中,也能保持优异的粘接强度和附着力。

 

气凝胶:质量轻密度小,是最高效隔热材料。其隔热性能优异,具有高比表面积、纳米级无穷多孔洞、低密度等特殊的微观结构。根据材质,可分为碳化物、氧化物、金属、非氧化物、半导体等多种。其中SiO2气凝胶研发、应用最早,高温耐受能力为600~800℃,可耐受住电池包短路造成的高温能量瞬间冲击。但其温度耐受仍存在一定缺陷,氮化物气凝胶、碳化物气凝胶正处于研发阶段,未来极有潜力应用到电池隔热领域中。

电池气凝胶与常规泡棉性能对比。来源:中国汽车工业协会,锂电池之家,中信证券

气凝胶目前的两个应用领域包括电池隔热和工业保温。作为新的切入点,电池应用过程中具有高技术难度、高损耗率和残次品率以及高成本等劣势。有机硅凭借其优良的耐热性能,合理的成本以及良好的弹性,最有潜力替代气凝胶成为隔热材料新方向。气凝胶位置在于电池间的隔热层中,被石墨散热膜覆盖,可以阻断热失控从失控单体向周围传播,从而降低电池组的损害以及附带的破坏作用。

电池气凝胶位置。来源:Jiosaerogel,中信证券

传统汽车领域用胶量在3kg左右,增量主要得益于智能设备导入,电子胶类占比提升,价值量相应提升。

电动汽车三电系统中,导热胶等功能性胶用量增量明显,但灌封胶的用量将减少,其他胶种用量基本持平。目前,单个电池包功能性胶在2.2kg左右,灌封胶在1kg左右,密封胶在0.6-0.8kg左右,结构胶在0.7kg左右。

电池

汽车胶粘剂及制件市场空间测算。来源:中信证券

并随着国产替代,胶类单位价值量将出现下降趋势。预计全国/全球2025年汽车胶粘剂市场空间将达154/342亿元左右,其中电动汽车三电系统等增量对应的空间为88/143亿元。

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分