求一种基于DDS IP核的任意波形发生器设计方案

电子说

1.3w人已加入

描述

IP核配置

定制输出数据位宽

这里的输出数据指的是输出的波形数据,其位宽相关参数介绍如下:

SFDR

可见,输出数据宽度和SFDR以及Noise Shaping有关,你可先不必知道Noise Shaping和SFDR是什么?只需要暂时知道在IP核定制时需要选择即可,如果Noise Shaping选择了None and Dithering,则输出数据宽度为:

SFDR

如果为Taylor:

SFDR

而Spurious Free Dynamic Range (SFDR)翻译为无杂散动态范围,和输出数据宽度以内部总线宽度以及各种实现策略有关;假设我需求的数据宽度为10位,Noise Shaping选为None,则SFDR为60,输入IP定制页面:

SFDR

查看输出是否为10bit:

SFDR

定制相位位宽(或频率分辨率)

根据数据手册对频率分辨率的描述:

频率分辨率:以赫兹为单位指定,指定最小频率分辨率,用于确定相位累加器使用的相位宽度及其相关的相位增量(PINC)和相位偏移(POFF)值。较小的值可提供较高的频率分辨率,并且需要较大的累加器。较大的值会减少硬件资源。根据噪声整形的选择,可以增加相位宽度,并且频率分辨率高于指定的分辨率。

对于光栅化模式(rasterized mode),频率分辨率由系统时钟、通道数和所选模数固定。从这段描述,我们得出信息,频率分辨率可以用来控制相位位宽。如果操作模式选择标准模式,如下IP 核定制页面:

SFDR

频率分辨率可以这样计算:

SFDR

我们先给定需求的相位宽度,又已知系统频率值,根据公式就可以算出频率分辨率;将频率分辨率代入IP核定制页面,即可自动得到相位宽度。 其实从上式也可以直接推出相位宽度:

SFDR

本例我们的系统频率为100MHz,如果想要相位宽度为16位,则频率 分辨率为:

SFDR

在IP核定制页面,如下图,我们输入频率分辨率的值:

SFDR

查看相位宽度为16位:

SFDR

上面选择的是标准模式,如果选择另一种模式呢?Rasterized Mode of Operation:光栅化操作模式;我们可以根据下面公式得到频率分辨率, 但和相位宽度没有直接关系 ,为了知识完整性,简介如下:

SFDR

在IP核定制页面提现如下:

SFDR

输出频率

本示例选择的是单通道,也即通道数为1,因此输出频率也只能选择一个:

SFDR

输出频率值也不是随便选择的,而是有其范围的,例如我输入105MHz,则通过不了:

SFDR

提示超出范围,范围为(0,100).

输出正余弦选择以及数据格式

可以在IP核定制页面选择输出正弦还是余弦还或者是都输出:

SFDR

本示例选择输出正余弦,由于输出采用的是axi总线,因此输出数据位于M_AXIS_DATA_TDATA中,那么正余弦输出结果是如何组合成M_AXIS_DATA_TDATA的呢?

SFDR

数据手册给出解释:

输出DATA通道TDATA结构将正弦和余弦输出字段符号扩展到下一个字节边界,然后以最低有效部分的余弦进行连接,以创建m_axis_data_tdata。如果仅选择正弦或余弦之一,则将其符号扩展并放入m_axis_data_tdata的最低有效部分。

下图显示了这三种配置的TDATA的内部结构。正交输出,仅余弦和仅正弦。例如,在图中显示了11位输出,符号扩展到16位。<<<表示符号扩展名:

SFDR

因此我们可以这么认为,由于存在扩展符号位的关系,我们可以提取低一半的数据为COS,高一半的数据未SIN。

其他设置

有了上面的定制参数,输出波形是没有问题了,至于其他的定制参数,本文选择默认:

SFDR

SFDR

SFDR

SFDR

点击OK,等待IP核定制完成。

电路设计

本示例设计十分简单,就是单纯例化下IP核:

SFDR

复制例化模板:

SFDR

给出设计文件:

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company: 
// Engineer: Reborn Lee
// Module Name: waveform_gen
// Additional Comments:
// 
//////////////////////////////////////////////////////////////////////////////////


`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company: 
// Engineer: Reborn Lee
// Module Name: waveform_gen
// Additional Comments:
// 
//////////////////////////////////////////////////////////////////////////////////




module waveform_gen(
	input i_clk,
	output o_data_valid,
	output [31 : 0] o_data,
	output o_phase_valid,
	output [15 : 0] o_phase


    );


dds_compiler_0 inst_dds (
  .aclk(i_clk),                                // input wire aclk
  .m_axis_data_tvalid(o_data_valid),    // output wire m_axis_data_tvalid
  .m_axis_data_tdata(o_data),      // output wire [31 : 0] m_axis_data_tdata
  .m_axis_phase_tvalid(o_phase_valid),  // output wire m_axis_phase_tvalid
  .m_axis_phase_tdata(o_phase)    // output wire [15 : 0] m_axis_phase_tdata
);


endmodule

行为仿真

仿真程序也仅仅例化设计文件,设计下系统频率即可:

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company: 
// Engineer: Reborn Lee
// Create Date: 2020/06/03 17:25:26
// Module Name: waveform_gen_tb
//////////////////////////////////////////////////////////////////////////////////




module waveform_gen_tb(


    );


	reg clk;


	wire o_data_valid;
	wire [15 : 0] o_data;
	wire o_phase_valid;
	wire [31 : 0] o_phase;




	initial begin
		clk = 0;
		forever begin
			# 5 clk = ~clk;
		end
	end




	waveform_gen inst_waveform_gen
		(
			.i_clk         (clk),
			.o_data_valid  (o_data_valid),
			.o_data        (o_data),
			.o_phase_valid (o_phase_valid),
			.o_phase       (o_phase)
		);




endmodule

执行行为仿真:

SFDR

注意,仿真时间可以在此确定:

SFDR

仿真波形:

SFDR

正余弦拆开:

SFDR

选择高16位作为sin。下面选择有符号数显示:

SFDR

同时选择模拟显示:

SFDR

之后你会发现正余弦显示波形相对于整体太平坦,以致于看起来像是直线,这是因为显示范围太大了导致的:

SFDR

改下显示的坐标幅度范围:

SFDR

SFDR

显示正常了。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分