基于STM32设计的人体健康检测仪

描述

一、项目介绍

当前文章介绍基于STM32设计的人体健康检测仪。设备采用STM32系列MCU作为主控芯片,配备血氧浓度传感器(使用MAX30102血氧浓度检测传感器)、OLED屏幕和电池供电等外设模块。设备可以广泛应用于医疗、健康等领域。可以帮助医生和病人更好地了解病情变化,提高治疗效果和生活质量。设备也可以用于健康管理、运动监测等场景,帮助用户了解自己的身体状况,保持健康的生活方式。

在项目中,使用了KEIL作为开发平台和工具,通过血氧模块采集人体的心跳和血氧浓度参数,并通过OLED屏幕显示现在的心跳和血氧浓度。同时,通过指标分析,提供采集到的数据与正常指标比对,分析被检测人员的健康状态。采集的数据可通过蓝牙或者WIFI传递给手机APP进行处理,方便用户随时了解自己的身体状况。

本设计采用STM32为主控芯片,搭配血氧浓度传感器和OLED屏幕,实现了人体健康数据的采集和展示,并对采集到的数据进行分析,判断被检测人员的健康状态。同时,设计使用蓝牙或WiFi将采集到的数据传递给手机APP进行处理。

检测仪

检测仪

二、项目设计思路

2.1 硬件设计

(1)主控芯片:STM32系列MCU,负责驱动其他外设模块;

(2)血氧浓度传感器:使用MAX30102血氧浓度检测传感器,用于采集人体的心跳和血氧浓度参数;

(3)OLED屏:用于显示现在的心跳和血氧浓度;

2.2 软件设计

(1) 通过血氧模块采集人体的心跳和血氧浓度参数;

(2) 通过OLED屏显示现在的心跳和血氧浓度;

(3) 对采集到的数据进行指标分析,将采集到的数据与正常指标比对,分析被检测人员的健康状态;

(4) 采集的数据可通过蓝牙或WiFi传递给手机APP进行处理。

2.3 技术实现

(1)设计采用AD8232心电图(ECG)模块和MAX30102血氧模块采集心跳和血氧浓度参数,并通过I2C接口连接主控芯片STM32。

(2)OLED屏使用I2C接口与主控芯片STM32连接。

(3)采集到的数据通过算法进行指标分析,将采集到的数据与正常指标比对,判断被检测人员的健康状态。

(4)设备通过蓝牙或WiFi将采集到的数据传递给手机APP进行处理。

三、代码设计

3.1 MAX30102血氧模块代码

I2C协议代码:

#define MAX30102_I2C_ADDR 0xAEvoid MAX30102_I2C_Init(void)
 {
     GPIO_InitTypeDef  GPIO_InitStructure;
     I2C_InitTypeDef   I2C_InitStructure;
 ​
     /* Enable GPIOB clock */
     RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
     /* Enable I2C1 and I2C2 clock */
     RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1 | RCC_APB1Periph_I2C2, ENABLE);
 ​
     // Configure I2C SCL and SDA pins
     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD; // Open-drain output
     GPIO_Init(GPIOB, &GPIO_InitStructure);
 ​
     // Configure I2C parameters
     I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
     I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
     I2C_InitStructure.I2C_OwnAddress1 = 0x00;
     I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
     I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
     I2C_InitStructure.I2C_ClockSpeed = 100000; // 100KHz
     I2C_Init(I2C1, &I2C_InitStructure);
 ​
     // Enable I2C
     I2C_Cmd(I2C1, ENABLE);
 }
 ​
 void MAX30102_I2C_WriteReg(uint8_t reg, uint8_t value)
 {
     while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, MAX30102_I2C_ADDR, I2C_Direction_Transmitter);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
 ​
     I2C_SendData(I2C1, reg);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_SendData(I2C1, value);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_GenerateSTOP(I2C1, ENABLE);
 }
 ​
 uint8_t MAX30102_I2C_ReadReg(uint8_t reg)
 {
     uint8_t value;
 ​
     while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, MAX30102_I2C_ADDR, I2C_Direction_Transmitter);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
 ​
     I2C_SendData(I2C1, reg);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, MAX30102_I2C_ADDR, I2C_Direction_Receiver);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));
 ​
     I2C_AcknowledgeConfig(I2C1, DISABLE);
     value = I2C_ReceiveData(I2C1);
 ​
     I2C_GenerateSTOP(I2C1, ENABLE);
 ​
     return value;
 }
 ​
 void MAX30102_I2C_ReadArray(uint8_t reg, uint8_t* data, uint8_t len)
 {
     while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, MAX30102_I2C_ADDR, I2C_Direction_Transmitter);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
 ​
     I2C_SendData(I2C1, reg);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, MAX30102_I2C_ADDR, I2C_Direction_Receiver);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));
 ​
     while(len > 1)
     {
         I2C_AcknowledgeConfig(I2C1, ENABLE);
         while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
         *data++ = I2C_ReceiveData(I2C1);
         len--;
     }
 ​
     I2C_AcknowledgeConfig(I2C1, DISABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED));
     *data++ = I2C_ReceiveData(I2C1);
 ​
     I2C_GenerateSTOP(I2C1, ENABLE);
 }

MAX30102的初始化函数和数据获取函数:

void MAX30102_Init(void)
 {
     MAX30102_I2C_Init();
 ​
     // Reset the device
     MAX30102_I2C_WriteReg(0x09, 0x40);
     HAL_Delay(100);
     MAX30102_I2C_WriteReg(0x09, 0x00);
 ​
     // Set FIFO average to 4 samples
     MAX30102_I2C_WriteReg(0x08, 0x03);
 ​
     // Set LED pulse amplitude
     MAX30102_I2C_WriteReg(0x0C, 0x1F);
     MAX30102_I2C_WriteReg(0x0D, 0x1F);
 ​
     // Set sample rate to 100Hz
     MAX30102_I2C_WriteReg(0x0F, 0x04);
 ​
     // Enable the red LED only
     MAX30102_I2C_WriteReg(0x11, 0x02);
 ​
     // Read the temperature value to start a reading
     MAX30102_I2C_ReadReg(0x1F);
 }
 ​
 uint32_t MAX30102_GetHeartRate(void)
 {
     uint8_t buffer[MAX30102_FIFO_DEPTH*4];
     MAX30102_Data sensor_data = {0};
     uint16_t ir_value;
     uint16_t red_value;
     uint8_t byte_count, fifo_overflow;
 ​
     // Check if any data is available in FIFO
     byte_count = MAX30102_I2C_ReadReg(0x06) - MAX30102_I2C_ReadReg(0x04);
     if(byte_count > 0)
     {
         fifo_overflow = MAX30102_I2C_ReadReg(0x09) & 0x80;
 ​
         // Read the data from FIFO
         MAX30102_I2C_ReadArray(0x07, buffer, byte_count);
 ​
         // Parse the data
         for(int i=0; i< byte_count; i+=4)
         {
             ir_value = ((uint16_t)buffer[i] < < 8) | buffer[i+1];
             red_value = ((uint16_t)buffer[i+2] < < 8) | buffer[i+3];
 ​
             // Update the sensor data
             MAX30102_UpdateData(&sensor_data, ir_value, red_value);
         }
 ​
         if(!fifo_overflow && MAX30102_CheckForBeat(sensor_data.IR_AC_Signal_Current))
         {
             return MAX30102_HeartRate(sensor_data.IR_AC_Signal_Previous, 16);
         }
     }
 ​
     return 0;
 }

数据处理函数:

void MAX30102_UpdateData(MAX30102_Data* data, uint16_t ir_value, uint16_t red_value)
 {
     int32_t ir_val_diff = ir_value - data- >IR_AC_Signal_Current;
     int32_t red_val_diff = red_value - data- >Red_AC_Signal_Current;
 ​
     // Update IR AC and DC signals
     data- >IR_AC_Signal_Current = (ir_val_diff + (7 * data- >IR_AC_Signal_Previous)) / 8;
     data- >IR_DC_Signal_Current = (ir_value + data- >IR_AC_Signal_Current + (2 * data- >IR_DC_Signal_Current)) / 4;
     data- >IR_AC_Signal_Previous = data- >IR_AC_Signal_Current;
 ​
     // Update Red AC and DC signals
     data- >Red_AC_Signal_Current = (red_val_diff + (7 * data- >Red_AC_Signal_Previous)) / 8;
     data- >Red_DC_Signal_Current = (red_value + data- >Red_AC_Signal_Current + (2 * data- >Red_DC_Signal_Current)) / 4;
     data- >Red_AC_Signal_Previous = data- >Red_AC_Signal_Current;
 ​
     // Update IR and Red AC signal peak-to-peak values
     if(data- >IR_AC_Signal_Current > data- >IR_AC_Max)
         data- >IR_AC_Max = data- >IR_AC_Signal_Current;
     else if(data- >IR_AC_Signal_Current < data- >IR_AC_Min)
         data- >IR_AC_Min = data- >IR_AC_Signal_Current;
 ​
     if(data- >Red_AC_Signal_Current > data- >Red_AC_Max)
         data- >Red_AC_Max = data- >Red_AC_Signal_Current;
     else if(data- >Red_AC_Signal_Current < data- >Red_AC_Min)
         data- >Red_AC_Min = data- >Red_AC_Signal_Current;
 }
 ​
 uint8_t MAX30102_CheckForBeat(int32_t ir_val)
 {
     static uint8_t beat_detection_enabled = 1;
     static uint32_t last_beat_time = 0;
     static int32_t threshold = 0x7FFFFF;
 ​
     uint32_t delta_time;
     int32_t beat_amplitude;
 ​
     if(beat_detection_enabled)
     {
         // Increment the beat counter
         MAX30102_beat_counter++;
 ​
         // Calculate the threshold value
         threshold += (ir_val - threshold) / 8;
 ​
         // Check if a beat has occurred
         if(ir_val > threshold && MAX30102_beat_counter > 20)
         {
             delta_time = micros() - last_beat_time;
             last_beat_time = micros();
             beat_amplitude = ir_val - threshold;
             if(delta_time < 1000 || delta_time > 2000 || beat_amplitude < 20 ||
             beat_amplitude > 1000) { return 0; }
                    // Reset the beat counter and set the threshold value
         MAX30102_beat_counter = 0;
         threshold = ir_val;
 ​
         return 1;
     }
 }
 ​
 return 0;
 }
 ​
 uint32_t MAX30102_HeartRate(int32_t ir_val, uint8_t samples) { int32_t ir_val_sum = 0;
 // Calculate the sum of IR values
 for(int i=0; i< samples; i++)
 {
     ir_val_sum += MAX30102_IR_Sample_Buffer[i];
 }
 ​
 // Calculate the average IR value
 ir_val_sum /= samples;
 ​
 // Calculate the heart rate
 return (uint32_t)(60 * MAX30102_SAMPLING_FREQUENCY / (ir_val - ir_val_sum));
 }

3.2 OLED显示屏驱动代码

I2C协议代码:

#define SSD1306_I2C_ADDR 0x78void SSD1306_I2C_Init(void)
 {
     GPIO_InitTypeDef  GPIO_InitStructure;
     I2C_InitTypeDef   I2C_InitStructure;
 ​
     /* Enable GPIOB clock */
     RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
     /* Enable I2C1 and I2C2 clock */
     RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1 | RCC_APB1Periph_I2C2, ENABLE);
 ​
     // Configure I2C SCL and SDA pins
     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD; // Open-drain output
     GPIO_Init(GPIOB, &GPIO_InitStructure);
 ​
     // Configure I2C parameters
     I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
     I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
     I2C_InitStructure.I2C_OwnAddress1 = 0x00;
     I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
     I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
     I2C_InitStructure.I2C_ClockSpeed = 100000; // 100KHz
     I2C_Init(I2C1, &I2C_InitStructure);
 ​
     // Enable I2C
     I2C_Cmd(I2C1, ENABLE);
 }
 ​
 void SSD1306_I2C_WriteReg(uint8_t reg, uint8_t value)
 {
     while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, SSD1306_I2C_ADDR, I2C_Direction_Transmitter);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
 ​
     I2C_SendData(I2C1, 0x00);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_SendData(I2C1, reg);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_SendData(I2C1, value);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
 ​
     I2C_GenerateSTOP(I2C1, ENABLE);
 }
 ​
 void SSD1306_I2C_WriteArray(uint8_t* data, uint16_t len)
 {
     while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));
 ​
     I2C_GenerateSTART(I2C1, ENABLE);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));
 ​
     I2C_Send7bitAddress(I2C1, SSD1306_I2C_ADDR, I2C_Direction_Transmitter);
     while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
 ​
     while(len--)
     {
         I2C_SendData(I2C1, *data++);
         while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
     }
 ​
     I2C_GenerateSTOP(I2C1, ENABLE);
 }

SSD1306的初始化函数和数据更新函数:

#define SSD1306_WIDTH 128
 #define SSD1306_HEIGHT 64
 #define SSD1306_BUFFER_SIZE (SSD1306_WIDTH*SSD1306_HEIGHT/8)uint8_t SSD1306_Buffer[SSD1306_BUFFER_SIZE];
 ​
 void SSD1306_Init(void)
 {
     SSD1306_I2C_Init();
 ​
     // Turn display off
     SSD1306_DisplayOff();
 ​
     // Set the clock to a high value for faster data transfer
     SSD1306_I2C_WriteReg(0x0F, 0x80);
 ​
     // Set multiplex ratio to default value (63)
     SSD1306_I2C_WriteReg(0xA8, 0x3F);
 ​
     // Set the display offset to 0
     SSD1306_I2C_WriteReg(0xD3, 0x00);
 ​
     // Display start line is 0
     SSD1306_I2C_WriteReg(0x40, 0x00);
 ​
     // Set segment remap to inverted
     SSD1306_I2C_WriteReg(0xA1, 0xC0);
 ​
     // Set COM output scan direction to inverted
     SSD1306_I2C_WriteReg(0xC8, 0xC0);
 ​
     // Disable display offset shift
     SSD1306_I2C_WriteReg(0xD7, 0x9F);
 ​
     // Set display clock divide ratio/oscillator frequency to default value (8/0xF0)
     SSD1306_I2C_WriteReg(0xD5, 0xF0);
 ​
     // Enable charge pump regulator
     SSD1306_I2C_WriteReg(0x8D, 0x14);
 ​
     // Set memory addressing mode
     // Set the display to normal mode (not inverted)
 SSD1306_I2C_WriteReg(0xA6, 0xA6);
 ​
 // Set the contrast to a default value of 127
 SSD1306_I2C_WriteReg(0x81, 0x7F);
 ​
 // Turn the display back on
 SSD1306_DisplayOn();
 ​
 // Clear the display buffer
 SSD1306_ClearBuffer();
 ​
 // Update the display with the cleared buffer
 SSD1306_UpdateDisplay();
 }
 ​
 void SSD1306_UpdateDisplay(void) { uint8_t column, page;
 }for(page=0; page< 8; page++)
 {
     SSD1306_I2C_WriteReg(0xB0+page, 0x00);
     SSD1306_I2C_WriteReg(0x10, 0x00);
     SSD1306_I2C_WriteReg(0x00, 0x00);
 ​
     for(column=0; column< SSD1306_WIDTH; column++)
     {
         SSD1306_I2C_WriteArray(&SSD1306_Buffer[column + page*SSD1306_WIDTH], 1);
     }
 }
 }
 void SSD1306_ClearBuffer(void) { memset(SSD1306_Buffer, 0x00, sizeof(SSD1306_Buffer)); }
 ​
 void SSD1306_SetPixel(uint8_t x, uint8_t y, uint8_t color) { if(x >= SSD1306_WIDTH || y >= SSD1306_HEIGHT) { return; }
 }if(color)
 {
     SSD1306_Buffer[x + (y/8)*SSD1306_WIDTH] |= (1 < < (y%8));
 }
 else
 {
     SSD1306_Buffer[x + (y/8)*SSD1306_WIDTH] &= ~(1 < < (y%8));
 }
 }

四、总结

本设计采用STM32为主控芯片,配合血氧浓度传感器和OLED屏幕,实现了人体健康数据的采集和展示,并通过算法对采集到的数据进行分析,判断被检测人员的健康状态。同时,设计使用蓝牙或WiFi将采集到的数据传递给手机APP进行处理。设计基本满足了人体健康检测仪的技术要求和环境要求。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分