SPI协议驱动设计

可编程逻辑

1364人已加入

描述

作者:郝旭帅  校对:陆辉

SPI是串行外设接口(Serial Peripheral Interface)的缩写。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,如今越来越多的芯片集成了这种通信协议。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,中间靠三线或者四线连接(三线时为单向传输或者数据线双向传输)。所有基于SPI的设备共有的,它们是MISO、MOSI、SCLK、CS。

MISO– Master Input Slave Output,主设备数据输入,从设备数据输出。

MOSI– Master Output Slave Input,主设备数据输出,从设备数据输入。

SCLK – Serial Clock,时钟信号,由主设备产生。

CS – Chip Select,从设备使能信号,由主设备控制。

SPI协议

cs是从芯片是否被主芯片选中的控制信号,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),主芯片对此从芯片的操作才有效。这就使在同一条总线上连接多个spi设备成为可能。

SPI协议

通讯是通过数据交换完成的,由sclk提供时钟脉冲,mosi、miso则基于此脉冲完成数据传输。数据输出通过 mosi线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。因此,至少需要N次时钟信号的改变(上沿和下沿为一次),才能完成N位数据的传输。

spi通信有四种不同的模式,不同的从设备可能在出厂时就已经配置为某种模式。通信的双方必须是工作在同一模式下,所以我们可以对主设备的spi模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式。

mode0:CPOL=0,CPHA=0;

mode1:CPOL=0,CPHA=1;

mode2:CPOL=1,CPHA=0;

mode3:CPOL=1,CPHA=1;

时钟极性CPOL是用来配置SCLK在空闲时,应该处于的状态;时钟相位CPHA用来配置在第几个边沿进行采样。

CPOL=0,表示在空闲状态时,时钟SCLK为低电平。

CPOL=1,表示在空闲状态时,时钟SCLK为高电平。

CPHA=0,表示数据采样是在第1个边沿。

CPHA=1,表示数据采样是在第2个边沿。

即:

CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。

CPOL=0,CPHA=1:此时空闲态时,SCLK处于低电平,数据发送是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。

CPOL=1,CPHA=0:此时空闲态时,SCLK处于高电平,数据采集是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在下降沿,数据发送是在上升沿。

CPOL=1,CPHA=1:此时空闲态时,SCLK处于高电平,数据发送是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在上升沿,数据发送是在下降沿。

SPI协议

硬件简介

FLASH闪存 的英文名称是"Flash Memory",一般简称为"Flash",它属于内存器件的一种,是一种非易失性( Non-Volatile )内存。

在开发板上有一块flash(M25P16),用来保存FPGA的硬件配置信息,也可以用来存储用户的应用程序或数据。

SPI协议

SPI协议

M25P16是一款带有写保护机制和高速SPI总线访问的2M字节串行Flash存储器,该存储器主要特点:2M字节的存储空间,分32个扇区,每个扇区256页,每页256字节;能单个扇区擦除和整片擦除;每扇区擦写次数保证10万次、数据保存期限至少20年。

SPI协议

C(serial clock:串行时钟)为D和Q提供了数据输入或者输出的时序。D的数据总是在C的上升沿被采样。Q的数据 在C的下降沿被输出。

SPI协议(Chip Select:芯片选择端),当输入为低时,该芯片被选中,可以允许进行读写操作。当输入为高时,该芯片被释放,不能够进行操作。

对于H——o——l——d——和W——, 为保持功能和硬件写保护功能,在本设计中不使用此管脚,在硬件设计时,这两个管脚全部被拉高了,即全部失效。

flash采用spi的通信协议,flash当做从机。serial clcok等效于spi中的sclk,chip select等效于spi中的cs,D等效于spi中的mosi,Q等效于spi中的miso。

flash可以支持mode0和mode3,这两种模式中,都是在时钟的上升沿采样,在时钟的下降沿发送数据。

SPI协议

flash的每一页都可以被写入,但是写入只能是把1改变为0。擦除可以把0改变为1。所以在正常写入数据之前,都要将flash进行擦除。

flash的命令表如下:

SPI协议

下面介绍几个常用的命令。

RDID(Read Identification :读ID):发送命令RDID(9F),然后接收第1个字节的memory type(20H),第二个字节的memory capacity(15H)。后续的字节暂不关心。

SPI协议

WREN(Write Enable :写使能):在任何写或者擦除的命令之前,都必须首先打开写使能。打开写使能为发送命令WREN(06h)。

SPI协议

RDSR(Read Status Register:读状态寄存器):发送命令RDSR(05h),然后返回一个字节的状态值。 

SPI协议

状态寄存器的格式如下:

SPI协议

WIP(Write In Progress bit)表示flash内部是否正在进行内部操作,写和擦除都会导致flash内部进行一段时间的工作,在内部工作期间,外部的命令会被忽略,所以在进行任何命令之前,都需要查看flash内部是否正在工作。WIP为1时,表示flash内部正在工作;WIP为0时,表示flash内部没有在工作。

READ(Read DATA Bytes:读数据):发送命令READ(03H),后续发送3个字节的地址,然后就可以接收数据,内部的地址会不断递增。一个读命令就可以把整个flash全部读完。

SPI协议

PP(Page Program :页编写):发送命令PP(02H),接着发送3个字节的地址,然后发送数据即可。切记所写的数据不能超过本页的地址范围。

SPI协议

SE(Sector Erase :扇区擦除):发送命令SE(D8H),接着发送3个字节的地址。

SPI协议

BE(Bulk Erase:整片擦除):发送命令BE(C7H)。

SPI协议

关于flash的其他的介绍,可以参考03_芯片手册->FLASH->M25P16.pdf。

设计要求

设计flash(M25P16)控制器。

设计分析

根据M25P16的数据手册得知,其接口为spi接口,且支持模式0和模式3,本设计中选择模式0。

输入时序图如下:

SPI协议

输出时序如下:

SPI协议

时序图中所对应的符号说明:

SPI协议

SPI协议

根据输入和输出的时序图以及参数表,将SPI的时钟的频率定为10MHz。

在设计中,FPGA作为主机,M25P16作为从机。

架构设计和信号说明

此模块命名为m25p16_drive。

SPI协议

二级模块(分模块)(第一页)

SPI协议

二级模块(分模块)(第二页)

SPI协议

SPI协议

设计中,各个命令单独写出控制器,通过多路选择器选择出对应的命令,然后控制spi_8bit_drive将数据按照spi的协议发送出去。各个命令的脉冲通过ctrl模块进行控制各个命令控制器,写入的数据首先写入到写缓冲区,读出的数据读出后写入到读缓冲区。

暂不分配的端口,在应用时都是由上游模块进行控制,本设计测试时,编写上游模块进行测试。

各个模块的功能,和连接线的功能在各个模块设计中说明。

spi_8bit_drive设计实现

本模块负责将8bit的并行数据按照spi协议发送出去,以及负责按照spi协议接收数据,将接收的数据(8bit)并行传输给各个模块。

spi_send_en为发送数据使能信号(脉冲信号),spi_send_data为所要发送数据,spi_send_done为发送完成信号(脉冲信号)。

spi_read_en为接收数据使能信号(脉冲信号),spi_read_data为所接收的数据,spi_read_done为接收完成信号(脉冲信号)。

 

module spi_8bit_drive (


  input   wire              clk,
  input   wire              rst_n,
  
  input   wire              spi_send_en,
  input   wire  [7:0]       spi_send_data,
  output  reg               spi_send_done,
  
  input   wire              spi_read_en,
  output  reg   [7:0]       spi_read_data,
  output  reg               spi_read_done,
  
  output  wire              spi_sclk,
  output  wire              spi_mosi,
  input   wire              spi_miso
);


  reg           [8:0]       send_data_buf;
  reg           [3:0]       send_cnt;
  reg                       rec_en;
  reg                       rec_en_n;
  reg           [3:0]       rec_cnt;
  reg           [7:0]       rec_data_buf;
  
  always @ (negedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      send_data_buf <= 9'd0;
    else
      if (spi_send_en == 1'b1)
        send_data_buf <= {spi_send_data, 1'b0};
      else
        send_data_buf <= send_data_buf;
  end
  
  always @ (negedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      send_cnt <= 4'd8;
    else
      if (spi_send_en == 1'b1)
        send_cnt <= 4'd0;
      else
        if (send_cnt < 4'd8)
          send_cnt <= send_cnt + 1'b1;
        else
          send_cnt <= send_cnt;
  end
  
  assign spi_mosi = send_data_buf[8 - send_cnt];
  assign spi_sclk = (send_cnt < 4'd8 || rec_en_n == 1'b1) ? clk : 1'b0;
  
  always @ (negedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      spi_send_done <= 1'b0;
    else
      if (send_cnt == 4'd7)
        spi_send_done <= 1'b1;
      else
        spi_send_done <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rec_en <= 1'b0;
    else
      if (spi_read_en == 1'b1)
        rec_en <= 1'b1;
      else
        if (rec_cnt ==  4'd7)
          rec_en <= 1'b0;
        else
          rec_en <= rec_en;
  end
  
  always @ (negedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rec_en_n <= 1'b0;
    else
      rec_en_n <= rec_en;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rec_data_buf <= 8'd0;
    else
      if (rec_en == 1'b1)
        rec_data_buf <= {rec_data_buf[6:0], spi_miso};
      else
        rec_data_buf <=rec_data_buf;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rec_cnt <= 4'd0;
    else
      if (rec_en == 1'b1)
        rec_cnt <= rec_cnt + 1'b1;
      else
        rec_cnt <= 4'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      spi_read_done <= 1'b0;
    else
      if (rec_cnt == 4'd8)
        spi_read_done <= 1'b1;
      else
        spi_read_done <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      spi_read_data <= 8'd0;
    else
      if (rec_cnt == 4'd8)
        spi_read_data <= rec_data_buf;
      else
        spi_read_data <= spi_read_data;
  end
  
endmodule

 

在发送逻辑控制中,全部的信号采用下降沿驱动。利用外部给予的spi_send_en作为启动信号,启动send_cnt。send_cnt在不发送数据时为8,发送数据时,从0到7。

在接收逻辑中,全部的信号采用上升沿驱动。利用外部给予的spi_read_en作为启动信号,启动rec_en,经过移位接收数据。

在spi_sclk输出时,采用组合逻辑。由于设计采用spi的模式0,故而spi_sclk不发送或者接收数据时为0,接收数据时为时钟信号。因为要求为模式0,所以在接收数据时,spi_sclk的输出不能够先有下降沿,即要求spi_sclk的控制信号不能由上升沿信号驱动,所以将rec_en同步到下降沿的rec_en_n。

仿真代码为:

 

`timescale 1ns/1ps


module spi_8bit_drive_tb;


  reg               clk;
  reg               rst_n;
  
  reg               spi_send_en;
  reg     [7:0]     spi_send_data;
  wire              spi_send_done;
  
  reg               spi_read_en;
  wire    [7:0]     spi_read_data;
  wire              spi_read_done;
  
  wire              spi_sclk;
  wire              spi_mosi;
  reg               spi_miso;


  spi_8bit_drive spi_8bit_drive_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .spi_send_en      (spi_send_en),
      .spi_send_data    (spi_send_data),
      .spi_send_done    (spi_send_done),
      
      .spi_read_en      (spi_read_en),
      .spi_read_data    (spi_read_data),
      .spi_read_done    (spi_read_done),
      
      .spi_sclk         (spi_sclk),
      .spi_mosi         (spi_mosi),
      .spi_miso         (spi_miso)
  );
  
  initial clk = 1'b0;
  always # 50 clk = ~clk;
  
  initial begin
    rst_n = 1'b0;
    spi_send_en = 1'b0;
    spi_send_data = 8'd0;
    spi_read_en = 1'b0;
    spi_miso = 1'b0;
    # 201
    rst_n = 1'b1;
    # 200
    @ (posedge clk);
    # 2;
    spi_send_en = 1'b1;
    spi_send_data = {$random} % 256;
    @ (posedge clk);
    # 2;
    spi_send_en = 1'b0;
    spi_send_data = 8'd0;
    
    @ (posedge spi_send_done);
    # 2000
    @ (posedge clk);
    # 2;
    spi_read_en = 1'b1;
    @ (posedge clk);
    # 2;
    spi_read_en = 1'b0;
    
    @ (posedge spi_read_done);
    # 200
    $stop;
  end
  
  always @ (negedge clk) spi_miso <= {$random} % 2;


endmodule

 

在仿真中,将时钟设置为10MHz。

所有的信号采用上升沿驱动。发送一个8bit的随机数值,接收一个8bit的随机数值。

spi_miso信号为从机下降沿驱动信号。

通过RTL仿真,可以看出发送和接收全部正常。

mux7_1设计实现

本模块负责将7个命令模块发出的命令(写使能、写数据和读使能)经过选择发送给spi_8bit_drive模块。

 

module mux7_1 (


  input     wire          rdsr_send_en,
  input     wire    [7:0] rdsr_send_data,
  input     wire          rdsr_read_en,
  
  input     wire          pp_send_en,
  input     wire    [7:0] pp_send_data,
  
  input     wire          wren_send_en,
  input     wire    [7:0] wren_send_data,
  
  input     wire          be_send_en,
  input     wire    [7:0] be_send_data,
  
  input     wire          se_send_en,
  input     wire    [7:0] se_send_data,
  
  input     wire          rdid_send_en,
  input     wire    [7:0] rdid_send_data,
  input     wire          rdid_read_en,
  
  input     wire          read_send_en,
  input     wire    [7:0] read_send_data,
  input     wire          read_read_en,
  
  input     wire    [2:0] mux_sel,                 
  
  output    reg           spi_send_en,
  output    reg     [7:0] spi_send_data,
  output    reg           spi_read_en
);


  always @ * begin
    case (mux_sel)
      3'd0    : begin 
        spi_send_en = rdsr_send_en; 
        spi_send_data = rdsr_send_data; 
        spi_read_en = rdsr_read_en; 
      end
      3'd1    : begin 
        spi_send_en = pp_send_en; 
        spi_send_data = pp_send_data; 
        spi_read_en = 1'b0; 
      end
      3'd2    : begin 
        spi_send_en = wren_send_en; 
        spi_send_data = wren_send_data; 
        spi_read_en = 1'b0; 
      end
      3'd3    : begin 
        spi_send_en = be_send_en; 
        spi_send_data = be_send_data; 
        spi_read_en = 1'b0; 
      end
      3'd4    : begin 
        spi_send_en = se_send_en; 
        spi_send_data = se_send_data; 
        spi_read_en = 1'b0; 
      end
      3'd5    : begin 
        spi_send_en = rdid_send_en; 
        spi_send_data = rdid_send_data; 
        spi_read_en = rdid_read_en; 
      end
      3'd6    : begin 
        spi_send_en = read_send_en; 
        spi_send_data = read_send_data; 
        spi_read_en = read_read_en; 
      end
      default : begin 
        spi_send_en = 1'b0; 
        spi_send_data = 8'd0; 
        spi_read_en = 1'b0; 
      end
    endcase
  end


endmodule

 

在设计中,有的命令模块不需要进行读取(pp和se等等),此时将输出的读使能信号输出为低电平。

be设计实现

该模块接收到be_en(整片擦除的脉冲信号)信号后,发送对应的使能和数据,等待发送完成脉冲。发送完成后,输出擦除完成的脉冲。

 

module be (


  input     wire            clk,
  input     wire            rst_n,
  
  input     wire            be_en,
  output    reg             be_done,
  
  output    reg             be_send_en,
  output    wire    [7:0]   be_send_data,
  input     wire            spi_send_done
);


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      be_send_en <= 1'b0;
    else
      be_send_en <= be_en;
  end
  
  assign be_send_data = 8'hc7;


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      be_done <= 1'b0;
    else
      be_done <= spi_send_done;
  end
  
endmodule

 

整片擦除的命令为8’hc7。

wren设计实现

该模块接收到wren_en(打开flash内部的写使能的脉冲信号)信号后,发送对应的使能和数据,等待发送完成脉冲。发送完成后,输出擦除完成的脉冲。

 

module wren (


  input     wire            clk,
  input     wire            rst_n,
  
  input     wire            wren_en,
  output    reg             wren_done,
  
  output    reg             wren_send_en,
  output    wire    [7:0]   wren_send_data,
  input     wire            spi_send_done
);


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wren_send_en <= 1'b0;
    else
      wren_send_en <= wren_en;
  end
  
  assign wren_send_data = 8'h06;


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wren_done <= 1'b0;
    else
      wren_done <= spi_send_done;
  end
  
endmodule

 

打开flash内部写使能的命令码为8’h06。

se设计实现

该模块接收到se_en(擦除扇区的写使能的脉冲信号)信号后,发送对应的使能和数据,等待发送完成脉冲。发送完成后,接着发送高八位地址,中间八位地址和低八位地址。全部发送完成后,发送se_done信号。

该模块采用状态机实现。SE_STATE(扇区擦除命令发送)、H_ADDR(高八位地址发送)、M_ADDR(中间八位地址发送)、L_ADDR(低八位地址发送)、SE_DONE(扇区擦除完成)。所有的脉冲信号在未标注的时刻,输出全部为0。

SPI协议

设计代码为:

 

module se (


  input   wire                clk,
  input   wire                rst_n,
  
  input   wire                se_en,
  input   wire      [23:0]    se_addr,
  output  reg                 se_done,
  
  output  reg                 se_send_en,
  output  reg       [7:0]     se_send_data,
  input   wire                spi_send_done
);


  localparam      SE_STATE    = 5'b00001;
  localparam      H_ADDR      = 5'b00010;
  localparam      M_ADDR      = 5'b00100;
  localparam      L_ADDR      = 5'b01000;
  localparam      SE_DONE     = 5'b10000;
  
  reg               [4:0]     c_state;
  reg               [4:0]     n_state;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= SE_STATE;
    else
      c_state <= n_state;
  end
  
  always @ * begin
    case (c_state)
      SE_STATE    :   begin
        if (se_en == 1'b0)
          n_state = SE_STATE;
        else
          n_state = H_ADDR;
      end
      
      H_ADDR      :   begin
        if (spi_send_done == 1'b0)
          n_state = H_ADDR;
        else
          n_state = M_ADDR;
      end
      
      M_ADDR      :   begin
        if (spi_send_done == 1'b0)
          n_state = M_ADDR;
        else
          n_state = L_ADDR;
      end
      
      L_ADDR      :   begin
        if (spi_send_done == 1'b0)
          n_state = L_ADDR;
        else
          n_state = SE_DONE;
      end
      
      SE_DONE     :   begin
        if (spi_send_done == 1'b0)
          n_state = SE_DONE;
        else
          n_state = SE_STATE;
      end
      
      default     :     n_state = SE_STATE;
    endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      se_send_en <= 1'b0;
    else
      case (c_state)
        SE_STATE    :   begin
          if (se_en == 1'b1)
            se_send_en <= 1'b1;
          else
            se_send_en <= 1'b0;
        end
        
        H_ADDR      :   begin
          if (spi_send_done == 1'b1)
            se_send_en <= 1'b1;
          else
            se_send_en <= 1'b0;
        end
        
        M_ADDR      :   begin
          if (spi_send_done == 1'b1)
            se_send_en <= 1'b1;
          else
            se_send_en <= 1'b0;
        end
        
        L_ADDR      :   begin
          if (spi_send_done == 1'b1)
            se_send_en <= 1'b1;
          else
            se_send_en <= 1'b0;
        end
        
        SE_DONE     :   begin
          se_send_en <= 1'b0;
        end
        
        default     :   se_send_en <= 1'b0;
      endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      se_send_data <= 8'd0;
    else
      case (c_state)
        SE_STATE    :   begin
          if (se_en == 1'b1)
            se_send_data <= 8'hd8;
          else
            se_send_data <= 8'd0;
        end
      
        H_ADDR      :   begin
          if (spi_send_done == 1'b1)
            se_send_data <= se_addr[23:16];
          else
            se_send_data <= 8'd0;
        end
        
        M_ADDR      :   begin
          if (spi_send_done == 1'b1)
            se_send_data <= se_addr[15:8];
          else
            se_send_data <= 8'd0;
        end
        
        L_ADDR      :   begin
          if (spi_send_done == 1'b1)
            se_send_data <= se_addr[7:0];
          else
            se_send_data <= 8'd0;
        end
        
        SE_DONE     :   begin
          se_send_data <= 8'd0;
        end
        
        default     :   se_send_data <= 8'd0;
      endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      se_done <= 1'b0;
    else
      if (c_state == SE_DONE && spi_send_done == 1'b1)
        se_done <= 1'b1;
      else
        se_done <= 1'b0;
  end
  
endmodule

 

在发送过程中,由于是每8bit发送一次,所以在时序上将看到发送时,每8个脉冲一组,中间会有明显的间隔。

pp设计实现

该模块负责将外部写fifo中的数据写入到flash中。wr_fifo_rd为写fifo的读使能信号,wrdata为从写fifo中读出的数据,wr_len为需要写入flash中数据的长度,wr_addr为写入地址。

该模块采用状态机实现。PP_STATE(发送pp命令),H_ADDR(发送高八位地址)、M_ADDR(发送中间八位地址),L_ADDR(发送低八位地址)、RDFIFO(读写fifo)、FIFO_WAIT(等待读写fifo的数据输出)、SEND(发送8bit数据)、SEND_WAIT(发送等待,发送完成后判断是否发送完成)。对于所有的脉冲信号,没有赋值的位置,全部赋值为0。

cnt为记录已经发送的数据个数。

SPI协议

设计代码为:

 

module pp (


  input   wire                  clk,
  input   wire                  rst_n,
  
  input   wire                  pp_en,
  output  reg                   pp_done,
  output  reg                   wr_fifo_rd,
  input   wire    [7:0]         wrdata,
  input   wire    [8:0]         wr_len,
  input   wire    [23:0]        wr_addr,
  
  output  reg                   pp_send_en,
  output  reg     [7:0]         pp_send_data,
  input   wire                  spi_send_done
);


  localparam      PP_STATE    = 8'b0000_0001;
  localparam      H_ADDR      = 8'b0000_0010;
  localparam      M_ADDR      = 8'b0000_0100;
  localparam      L_ADDR      = 8'b0000_1000;
  localparam      RDFIFO      = 8'b0001_0000;
  localparam      FIFO_WAIT   = 8'b0010_0000;
  localparam      SEND        = 8'b0100_0000;
  localparam      SEND_WAIT   = 8'b1000_0000;
  
  reg             [7:0]         c_state;
  reg             [7:0]         n_state;
  reg             [8:0]         cnt;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= PP_STATE;
    else
      c_state <= n_state;
  end
  
  always @ * begin
    case (c_state)
      PP_STATE        :   begin
        if (pp_en == 1'b0)
          n_state = PP_STATE;
        else
          n_state = H_ADDR;
      end
      
      H_ADDR          :   begin
        if (spi_send_done == 1'b1)
          n_state = M_ADDR;
        else
          n_state = H_ADDR;
      end
      
      M_ADDR          :   begin
        if (spi_send_done == 1'b1)
          n_state = L_ADDR;
        else
          n_state = M_ADDR;
      end
      
      L_ADDR          :   begin
        if (spi_send_done == 1'b1)
          n_state = RDFIFO;
        else
          n_state = L_ADDR;
      end
      
      RDFIFO          :   begin
        if (spi_send_done == 1'b1)
          n_state = FIFO_WAIT;
        else
          n_state = RDFIFO;
      end
      
      FIFO_WAIT       :   begin
        n_state = SEND;
      end
      
      SEND            :   begin
        n_state = SEND_WAIT;
      end
      
      SEND_WAIT       :   begin
        if (spi_send_done == 1'b1)
          if (cnt == wr_len)
            n_state = PP_STATE;
          else
            n_state = FIFO_WAIT;
        else
          n_state = SEND_WAIT;
      end
      
      default       :   n_state = PP_STATE;
      
    endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      pp_send_en <= 1'b0;
    else
      case (c_state)
        PP_STATE      :   begin
          if  (pp_en == 1'b1)
            pp_send_en <= 1'b1;
          else
            pp_send_en <= 1'b0;
        end
      
        H_ADDR        :   begin
          if (spi_send_done == 1'b1)
            pp_send_en <= 1'b1;
          else
            pp_send_en <= 1'b0;
        end
        
        M_ADDR        :   begin
          if (spi_send_done == 1'b1)
            pp_send_en <= 1'b1;
          else
            pp_send_en <= 1'b0;
        end
        
        L_ADDR        :   begin
          if (spi_send_done == 1'b1)
            pp_send_en <= 1'b1;
          else
            pp_send_en <= 1'b0;
        end
        
        SEND          : begin
          pp_send_en <= 1'b1;
        end
        
        default       :   pp_send_en <= 1'b0;
      endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      pp_send_data <= 8'd0;
    else
      case (c_state)
        PP_STATE      :   begin
          if  (pp_en == 1'b1)
            pp_send_data <= 8'h02;
          else
            pp_send_data <= 8'd0;
        end
      
        H_ADDR        :   begin
          if (spi_send_done == 1'b1)
            pp_send_data <= wr_addr[23:16];
          else
            pp_send_data <= 8'd0;
        end
        
        M_ADDR        :   begin
          if (spi_send_done == 1'b1)
            pp_send_data <= wr_addr[15:8];
          else
            pp_send_data <= 8'd0;
        end
        
        L_ADDR        :   begin
          if (spi_send_done == 1'b1)
            pp_send_data <= wr_addr[7:0];
          else
            pp_send_data <= 8'd0;
        end
        
        SEND          : begin
          pp_send_data <= wrdata;
        end
        
        default       :   pp_send_data <= 8'd0;
      endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      pp_done <= 1'b0;
    else
      if (c_state == SEND_WAIT && spi_send_done == 1'b1 && cnt == wr_len)
        pp_done <= 1'b1;
      else
        pp_done <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 9'd0;
    else
      if ((c_state == RDFIFO && spi_send_done == 1'b1) || (c_state == SEND_WAIT && spi_send_done == 1'b1 && cnt < wr_len))
        cnt <= cnt + 1'b1;
      else
        if (c_state == PP_STATE)
          cnt <= 9'd0;
        else
          cnt <= cnt;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_fifo_rd <= 1'b1;
    else
      if ((c_state == RDFIFO && spi_send_done == 1'b1) || (c_state == SEND_WAIT && spi_send_done == 1'b1 && cnt < wr_len))
        wr_fifo_rd <= 1'b1;
      else
        wr_fifo_rd <= 1'b0;
  end
  
endmodule

 

rdsr设计实现

本模块的功能为读取m25p16的状态寄存器,主要检测状态寄存器的最低位(WIP)。

WIP(write in progress :正在进行写进程),该bie位表示了flash内部是否在进行写进程。如果处于写进程时,flash忽略外部所有的命令,所以建议在执行任何命令前,首先进行检测该位。1表示正在写进程中,0表示不处于写进程。

如果检测到正在写进程中,进行延迟1ms,然后再次读取该位状态。直到写进程结束。

本模块采用状态机设计实现。ILDE(发送读状态寄存器命令)、RDSRSTATE(发送读使能)、WIP(判断wip位)、 DELAY1ms(延迟1ms)。cnt为延迟1ms的计数器。

SPI协议

设计代码为:

 

module rdsr (


  input   wire                    clk,
  input   wire                    rst_n,
  
  input   wire                    rdsr_en,
  output  reg                     rdsr_done,
  
  output  reg                     rdsr_send_en,
  output  reg       [7:0]         rdsr_send_data,
  input   wire                    spi_send_done,
  
  output  reg                     rdsr_read_en,
  input   wire      [7:0]         spi_read_data,
  input   wire                    spi_read_done
);


  parameter     T_1ms           =       50_000;
  
  
  localparam    IDLE            =       4'b0001;
  localparam    RDSRSTATE       =       4'b0010;
  localparam    WIP             =       4'b0100;
  localparam    DELAY1ms        =       4'b1000;
  
  reg               [3:0]         c_state;
  reg               [3:0]         n_state;
  reg               [15:0]        cnt;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE          :   begin
        if (rdsr_en == 1'b0)
          n_state = IDLE;
        else
          n_state = RDSRSTATE;
      end
      
      RDSRSTATE     :   begin
        if (spi_send_done == 1'b1)
          n_state = WIP;
        else
          n_state = RDSRSTATE;
      end
      
      WIP           :   begin
        if (spi_read_done == 1'b0)
          n_state = WIP;
        else
          if (spi_read_data[0] == 1'b0)
            n_state = IDLE;
          else
            n_state = DELAY1ms;
      end
      
      DELAY1ms      :   begin
        if (cnt < T_1ms - 1'b1)
          n_state = DELAY1ms;
        else
          n_state = RDSRSTATE;
      end
      
      default       :   n_state = IDLE;
    
    endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 16'd0;
    else
      if (c_state == DELAY1ms && cnt < T_1ms - 1'b1)
        cnt <= cnt + 1'b1;
      else
        cnt <= 16'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdsr_done <= 1'b0;
    else
      if (c_state == WIP && spi_read_done == 1'b1 && spi_read_data[0] == 1'b0)
        rdsr_done <= 1'b1;
      else
        rdsr_done <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdsr_send_data <= 8'd0;
    else
      if ((c_state == IDLE && rdsr_en == 1'b1) || (c_state == DELAY1ms && cnt == T_1ms - 1'b1))
        rdsr_send_data <= 8'h05;
      else
        rdsr_send_data <= 8'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdsr_send_en <= 1'b0;
    else
      if ((c_state == IDLE && rdsr_en == 1'b1) || (c_state == DELAY1ms && cnt == T_1ms - 1'b1))
        rdsr_send_en <= 1'b1;
      else
        rdsr_send_en <= 1'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdsr_read_en <= 1'b0;
    else
      if (c_state == RDSRSTATE && spi_send_done == 1'b1)
        rdsr_read_en <= 1'b1;
      else
        rdsr_read_en <= 1'b0;
  end
  
endmodule

 

rdid设计实现

该模块负责读取flash的ID(2015),验证ID的正确性。

该模块采用状态机的方式实现。IDLE(等待读取ID的命令)、IDSTATE1(读取高八位ID)、IDSTATE2(读取中间八位ID)、IDSTATE3(读取低八位ID)、ID_CHECK(检测ID的正确性)。

状态转移图如下:

SPI协议

设计代码为:

 

module rdid (


  input     wire                  clk,
  input     wire                  rst_n,
  
  input     wire                  rdid_en,
  output    reg                   rdid_done,
  
  output    reg                   rdid_send_en,
  output    reg     [7:0]         rdid_send_data,
  input     wire                  spi_send_done,
  
  output    reg                   rdid_read_en,
  input     wire                  spi_read_done,
  input     wire    [7:0]         spi_read_data
);


  localparam        IDLE          = 5'b00001;
  localparam        IDSTATE1      = 5'b00010;
  localparam        IDSTATE2      = 5'b00100;
  localparam        IDSTATE3      = 5'b01000;
  localparam        ID_CHECK      = 5'b10000;
  
  reg               [4:0]         c_state;
  reg               [4:0]         n_state;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end
  
  always @ * begin
    case (c_state)
      IDLE          :     begin
        if (rdid_en == 1'b1)
          n_state = IDSTATE1;
        else
          n_state = IDLE;
      end
      
      IDSTATE1      :     begin
        if (spi_send_done == 1'b1)
          n_state = IDSTATE2;
        else
          n_state = IDSTATE1;
      end
      
      IDSTATE2      :     begin
        if (spi_read_done == 1'b1 && spi_read_data == 8'h20)
          n_state = IDSTATE3;
        else
          n_state = IDSTATE2;
      end
      
      IDSTATE3      :     begin
        if (spi_read_done == 1'b1 && spi_read_data == 8'h20)
          n_state = ID_CHECK;
        else
          n_state = IDSTATE3;
      end
      
      ID_CHECK      :     begin
        if (spi_read_done == 1'b1 && spi_read_data == 8'h15)
          n_state = IDLE;
        else
          n_state = ID_CHECK;
      end
      
      default       :   n_state = IDLE;
    endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdid_send_data <= 8'd0;
    else
      if (c_state == IDLE && rdid_en == 1'b1)
        rdid_send_data <= 8'h9f;
      else
        rdid_send_data <= 8'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdid_send_en <= 1'b0;
    else
      if (c_state == IDLE && rdid_en == 1'b1)
        rdid_send_en <= 1'b1;
      else
        rdid_send_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdid_read_en <= 1'b0;
    else
      if ((c_state == IDSTATE1 && spi_send_done == 1'b1) || (c_state == IDSTATE2 && spi_read_done == 1'b1 && spi_read_data == 8'h20) || (c_state == IDSTATE3 && spi_read_done == 1'b1 && spi_read_data == 8'h20))
        rdid_read_en <= 1'b1;
      else
        rdid_read_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdid_done <= 1'b0;
    else
      if (c_state == ID_CHECK && spi_read_done == 1'b1 && spi_read_data == 8'h15)
        rdid_done <= 1'b1;
      else
        rdid_done <= 1'b0;
  end
  
endmodule

 

read_ctrl设计实现

该模块负责将flash的数据读出,写入到输出缓存中。

该模块采用状态机实现。RD_STATE(等待读命令)、H_ADDR(发送高八位地址)、M_ADDR(发送中间八位地址)、L_ADDR(发送低八位地址)、RDDATA(读取数据)、WRFIFO(将读出的数据写入到FIFO中)、CHECK_LEN(判断读取的长度)。

状态转移图如下:

SPI协议

设计代码为:

 

module read_ctrl (


  input     wire                clk,
  input     wire                rst_n,
  
  input     wire                read_en,
  input     wire    [23:0]      rd_addr,
  input     wire    [8:0]       rd_len,
  
  output    reg     [7:0]       rddata,
  output    reg                 rd_fifo_wr,
  
  output    reg                 read_done,
  
  output    reg                 read_send_en,
  output    reg     [7:0]       read_send_data,
  input     wire                spi_send_done,
  
  output    reg                 read_read_en,
  input     wire                spi_read_done,
  input     wire    [7:0]       spi_read_data
);


  localparam        RD_STATE    = 7'b000_0001;
  localparam        H_ADDR      = 7'b000_0010;
  localparam        M_ADDR      = 7'b000_0100;
  localparam        L_ADDR      = 7'b000_1000;
  localparam        RDDATA      = 7'b001_0000;
  localparam        WRFIFO      = 7'b010_0000;
  localparam        CHECK_LEN   = 7'b100_0000;
  
  reg               [6:0]       c_state;
  reg               [6:0]       n_state;
  reg               [8:0]       cnt;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= RD_STATE;
    else
      c_state <= n_state;
  end
  
  always @ * begin
    case (c_state)
      RD_STATE      :   begin
        if (read_en == 1'b1)
          n_state = H_ADDR;
        else
          n_state = RD_STATE;
      end
      
      H_ADDR        :   begin
        if (spi_send_done == 1'b1)
          n_state = M_ADDR;
        else
          n_state = H_ADDR;
      end
      
      M_ADDR        :   begin
        if (spi_send_done == 1'b1)
          n_state = L_ADDR;
        else
          n_state = M_ADDR;
      end
      
      L_ADDR        :   begin
        if (spi_send_done == 1'b1)
          n_state = RDDATA;
        else
          n_state = L_ADDR;
      end
      
      RDDATA        :   begin
        if (spi_send_done == 1'b1)
          n_state = WRFIFO;
        else
          n_state = RDDATA;
      end
      
      WRFIFO        :   begin
        if (spi_read_done == 1'b1)
          n_state = CHECK_LEN;
        else
          n_state = WRFIFO;
      end
      
      CHECK_LEN     :   begin
        if (cnt == rd_len)
          n_state = RD_STATE;
        else
          n_state = WRFIFO;
      end
      
      default       :   n_state = RD_STATE;
    
    endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 9'd0;
    else
      if ((c_state == RDDATA && spi_send_done == 1'b1) || (c_state == CHECK_LEN && cnt < rd_len))
        cnt <= cnt + 1'b1;
      else
        if (c_state == RD_STATE)
          cnt <= 9'd0;
        else  
          cnt <= cnt;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      read_read_en <= 1'b0;
    else
      if ((c_state == RDDATA && spi_send_done == 1'b1) || (c_state == CHECK_LEN && cnt < rd_len))
        read_read_en <= 1'b1;
      else
        read_read_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      read_done <= 1'b0;
    else
      if (c_state == CHECK_LEN && cnt == rd_len)
        read_done <= 1'b1;
      else
        read_done <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_fifo_wr <= 1'b0;
    else
      if (c_state == WRFIFO && spi_read_done == 1'b1)
        rd_fifo_wr <= 1'b1;
      else
        rd_fifo_wr <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rddata <= 8'd0;
    else
      if (c_state == WRFIFO && spi_read_done == 1'b1)
        rddata <= spi_read_data;
      else
        rddata <= 8'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      read_send_en <= 1'b0;
    else
      case (c_state)
        RD_STATE      :   begin
          if  (read_en == 1'b1)
            read_send_en <= 1'b1;
          else
            read_send_en <= 1'b0;
        end
      
        H_ADDR        :   begin
          if (spi_send_done == 1'b1)
            read_send_en <= 1'b1;
          else
            read_send_en <= 1'b0;
        end
        
        M_ADDR        :   begin
          if (spi_send_done == 1'b1)
            read_send_en <= 1'b1;
          else
            read_send_en <= 1'b0;
        end
        
        L_ADDR        :   begin
          if (spi_send_done == 1'b1)
            read_send_en <= 1'b1;
          else
            read_send_en <= 1'b0;
        end
     
        default       :   read_send_en <= 1'b0;
      endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      read_send_data <= 8'd0;
    else
      case (c_state)
        RD_STATE      :   begin
          if  (read_en == 1'b1)
            read_send_data <= 8'h03;
          else
            read_send_data <= 8'd0;
        end
      
        H_ADDR        :   begin
          if (spi_send_done == 1'b1)
            read_send_data <= rd_addr[23:16];
          else
            read_send_data <= 8'd0;
        end
        
        M_ADDR        :   begin
          if (spi_send_done == 1'b1)
            read_send_data <= rd_addr[15:8];
          else
            read_send_data <= 8'd0;
        end
        
        L_ADDR        :   begin
          if (spi_send_done == 1'b1)
            read_send_data <= rd_addr[7:0];
          else
            read_send_data <= 8'd0;
        end
        
        default       :   read_send_data <= 8'd0;
      endcase
  end
  
endmodule

 

wr_fifo和rd_fifo调用

两个fifo的宽度设置为8,深度设置为256,同步fifo,带有复位。

ctrl设计实现

该模块根据外部的命令,按照m25p16的执行规则,进行控制各个模块的执行。

该模块采用状态机实现。INIT_RDSR(读WIP),INIT_RDID(读ID),INIT_ID(判断ID),WIP(读WIP),WIP_DONE(等待WIP),IDLE(空闲状态),**STATE(执行对应的命令),**WREN(打开flash的写使能)。在进行任何命令前,都检查wip。

状态转移图如下:

SPI协议

在不同的状态,mux_sel选择对应的命令通过。

drive_busy只有在IDLE状态才是低电平。

spi_cs_n信号, DLE状态为高电平、WIP_DONE(INIT_RDID)中spi_read_done信号为高时 (保证能够多次读取状态寄存器)、在其他状态发生切换时,spi_cs_n 为高电平,否则为低电平。

设计代码为:

 

module ctrl (


  input     wire                clk,
  input     wire                rst_n,
  
  input     wire                flag_be,
  input     wire                flag_se,
  input     wire                flag_wr,
  input     wire                flag_rd,
  input     wire    [23:0]      addr,
  input     wire    [8:0]       len,
  
  output    wire                drive_busy,
  
  output    reg                 spi_cs_n,
  
  input     wire                spi_read_done,
  output    reg                 rdsr_en,
  input     wire                rdsr_done,
  
  output    reg                 wren_en,
  input     wire                wren_done,
  
  output    reg                 pp_en,
  output    reg     [23:0]      wr_addr,
  output    reg     [8:0]       wr_len,
  input     wire                pp_done,
  
  output    reg                 be_en,
  input     wire                be_done,
  
  output    reg                 se_en,
  output    reg     [23:0]      se_addr,
  input     wire                se_done,
  
  output    reg                 rdid_en,
  input     wire                rdid_done,
  
  output    reg                 read_en,
  output    reg     [23:0]      rd_addr,
  output    reg     [8:0]       rd_len,
  input     wire                read_done,
  
  output    reg     [2:0]       mux_sel
);


  localparam        INIT_RDSR       =   13'b0000_0000_00001;
  localparam        INIT_RDID       =   13'b0000_0000_00010;
  localparam        INIT_ID         =   13'b0000_0000_00100;
  localparam        WIP             =   13'b0000_0000_01000;
  localparam        WIP_DONE        =   13'b0000_0000_10000;
  localparam        IDLE            =   13'b0000_0001_00000;
  localparam        RDSTATE         =   13'b0000_0010_00000;
  localparam        PPWREN          =   13'b0000_0100_00000;
  localparam        PPSTATE         =   13'b0000_1000_00000;
  localparam        SEWREN          =   13'b0001_0000_00000;
  localparam        SESTATE         =   13'b0010_0000_00000;
  localparam        BEWREN          =   13'b0100_0000_00000;
  localparam        BESTATE         =   13'b1000_0000_00000;
  
  reg               [12:0]      c_state;
  reg               [12:0]      n_state;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= INIT_RDSR;
    else
      c_state <= n_state;
  end
  
  always @ * begin
    case (c_state)
      INIT_RDSR         :   begin
        n_state = INIT_RDID;
      end
      
      INIT_RDID         :   begin
        if (rdsr_done == 1'b1)
          n_state = INIT_ID;
        else
          n_state = INIT_RDID;
      end
      
      INIT_ID           :   begin
        if (rdid_done == 1'b1)
          n_state = WIP;
        else
          n_state = INIT_ID;
      end
      
      WIP               :   begin
        n_state = WIP_DONE;
      end
      
      WIP_DONE          :   begin
        if (rdsr_done == 1'b1)
          n_state = IDLE;
        else
          n_state = WIP_DONE;
      end
      
      IDLE              :   begin
        if (flag_wr == 1'b1)
          n_state = PPWREN;
        else
          if (flag_rd == 1'b1)
            n_state = RDSTATE;
          else
            if (flag_be == 1'b1)
              n_state = BEWREN;
            else
              if (flag_se == 1'b1)
                n_state = SEWREN;
              else
                n_state = IDLE;
      end
      
      RDSTATE           :   begin
        if (read_done == 1'b1)
          n_state = WIP;
        else
          n_state = RDSTATE;
      end
      
      PPWREN            :   begin
        if (wren_done == 1'b1)
          n_state = PPSTATE;
        else
          n_state = PPWREN;
      end
      
      PPSTATE           :   begin
        if (pp_done == 1'b1)
          n_state = WIP;
        else
          n_state = PPSTATE;
      end
      
      SEWREN            :   begin
        if (wren_done == 1'b1)
          n_state = SESTATE;
        else
          n_state = SEWREN;
      end
      
      SESTATE           :   begin
        if (se_done == 1'b1)
          n_state = WIP;
        else
          n_state = SESTATE;
      end
      
      BEWREN            :   begin
        if (wren_done == 1'b1)
          n_state = BESTATE;
        else
          n_state = BEWREN;
      end
      
      BESTATE           :   begin
        if (be_done == 1'b1)
          n_state = WIP;
        else
          n_state = BESTATE;
      end
      
      default     :   n_state = INIT_RDSR;
    endcase
  end
  
  assign drive_busy = (c_state != IDLE || flag_be == 1'b1 || flag_rd == 1'b1 || flag_se == 1'b1 || flag_wr == 1'b1);
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      spi_cs_n <= 1'b1;
    else
      case (c_state)
        INIT_RDSR       :     spi_cs_n <= 1'b1;
        
        INIT_RDID       :     if (spi_read_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
        
        INIT_ID         :     if (rdid_done == 1'b1)  
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
        
        WIP             :     spi_cs_n <= 1'b1;
        
        WIP_DONE        :     if (spi_read_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
                                
        IDLE            :     spi_cs_n <= 1'b1;
        
        RDSTATE         :     if (read_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
        
        PPWREN          :     if (wren_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
                                
        PPSTATE         :     if (pp_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
      
        SEWREN          :     if (wren_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
                                
        SESTATE         :     if (se_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
      
        BEWREN          :     if (wren_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
                                
        BESTATE         :     if (be_done == 1'b1)
                                spi_cs_n <= 1'b1;
                              else
                                spi_cs_n <= 1'b0;
        
        default         :     spi_cs_n <= 1'b1;
      endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdsr_en <= 1'b0;
    else
      if (c_state == INIT_RDSR || c_state == WIP)
        rdsr_en <= 1'b1;
      else
        rdsr_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wren_en <= 1'b0;
    else
      if (c_state == IDLE && (flag_be == 1'b1 || flag_se == 1'b1 || flag_wr == 1'b1))
        wren_en <= 1'b1;
      else
        wren_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      pp_en <= 1'b0;
    else
      if (c_state == PPWREN && wren_done == 1'b1)
        pp_en <= 1'b1;
      else
        pp_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_len <= 9'd0;
    else
      if (c_state == IDLE && flag_wr == 1'b1)
        wr_len <= len;
      else
        wr_len <= wr_len;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_addr <= 24'd0;
    else
      if (c_state == IDLE && flag_wr == 1'b1)
        wr_addr <= addr;
      else
        wr_addr <= wr_addr;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      be_en <= 1'b0;
    else
      if (c_state == BEWREN && wren_done == 1'b1)
        be_en <= 1'b1;
      else
        be_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      se_en <= 1'b0;
    else
      if (c_state == SEWREN && wren_done == 1'b1)
        se_en <= 1'b1;
      else
        se_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      se_addr <= 24'd0;
    else
      if (c_state == IDLE && flag_se == 1'b1)
        se_addr <= addr;
      else
        se_addr <= se_addr;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdid_en <= 1'b0;
    else
      if (c_state == INIT_RDID && rdsr_done == 1'b1)
        rdid_en <= 1'b1;
      else
        rdid_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_len <= 9'd0;
    else
      if (c_state == IDLE && flag_rd == 1'b1)
        rd_len <= len;
      else
        rd_len <= rd_len;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_addr <= 24'd0;
    else
      if (c_state == IDLE && flag_rd == 1'b1)
        rd_addr <= addr;
      else
        rd_addr <= rd_addr;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      read_en <= 1'b0;
    else
      if (c_state == IDLE && flag_rd == 1'b1)
        read_en <= 1'b1;
      else
        read_en <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      mux_sel <= 3'd0;
    else
      case (c_state)
        INIT_RDSR       :   mux_sel <= 3'd0;
        INIT_RDID       :   mux_sel <= 3'd0;
        INIT_ID         :   mux_sel <= 3'd5;
        WIP             :   mux_sel <= 3'd0;
        WIP_DONE        :   mux_sel <= 3'd0;
        IDLE            :   mux_sel <= 3'd0;
        RDSTATE         :   mux_sel <= 3'd6;
        PPWREN          :   mux_sel <= 3'd2;
        PPSTATE         :   mux_sel <= 3'd1;
        SEWREN          :   mux_sel <= 3'd2;
        SESTATE         :   mux_sel <= 3'd4;
        BEWREN          :   mux_sel <= 3'd2;
        BESTATE         :   mux_sel <= 3'd3;
        default         :   mux_sel <= 3'd0;
      endcase
  end
  
endmodule

 

m25p16_drive设计实现

本模块负责连接所有二级模块,实现所有的功能。

 

module m25p16_drive (


  input     wire                  clk,
  input     wire                  rst_n,
  
  input     wire                  wrfifo_wr,
  input     wire    [7:0]         wrfifo_data,
  
  input     wire                  flag_be,
  input     wire                  flag_se,
  input     wire                  flag_wr,
  input     wire                  flag_rd,
  
  input     wire    [23:0]        addr,
  input     wire    [8:0]         len,
  
  input     wire                  rdfifo_rd,
  output    wire    [7:0]         rdfifo_rdata,
  output    wire                  rdfifo_rdempty,
  
  output    wire                  drive_busy,
  
  output    wire                  spi_cs_n,
  output    wire                  spi_sclk,
  output    wire                  spi_mosi,
  input     wire                  spi_miso
);


  wire                            spi_send_en;
  wire              [7:0]         spi_send_data;
  wire                            spi_send_done;
  wire                            spi_read_en;
  wire              [7:0]         spi_read_data;
  wire                            spi_read_done;
  
  wire                            rdsr_send_en;
  wire              [7:0]         rdsr_send_data;
  wire                            rdsr_read_en;
  
  wire                            pp_send_en;
  wire              [7:0]         pp_send_data;
  
  wire                            wren_send_en;
  wire              [7:0]         wren_send_data;
  
  wire                            be_send_en;
  wire              [7:0]         be_send_data;
  
  wire                            se_send_en;
  wire              [7:0]         se_send_data;
  
  wire                            rdid_send_en;
  wire              [7:0]         rdid_send_data;
  wire                            rdid_read_en;
  
  wire                            read_send_en;
  wire              [7:0]         read_send_data;
  wire                            read_read_en;
  
  wire              [2:0]         mux_sel;
  
  wire                            be_en;
  wire                            be_done;
  wire                            wren_en;
  wire                            wren_done;
  wire                            se_en;
  wire              [23:0]        se_addr;
  wire                            se_done;
  wire                            pp_en;
  wire                            pp_done;
  wire                            wr_fifo_rd;
  wire              [7:0]         wrdata;
  wire              [8:0]         wr_len;
  wire              [23:0]        wr_addr;
  wire                            rdsr_en;
  wire                            rdsr_done;
  wire                            rdid_en;
  wire                            rdid_done;
  wire                            read_en;
  wire              [23:0]        rd_addr;
  wire              [8:0]         rd_len;
  wire              [7:0]         rddata;
  wire                            rd_fifo_wr;
  wire                            read_done;
  
  ctrl ctrl_inst(


      .clk            (clk),
      .rst_n          (rst_n),
      
      .flag_be        (flag_be),
      .flag_se        (flag_se),
      .flag_wr        (flag_wr),
      .flag_rd        (flag_rd),
      .addr           (addr),
      .len            (len),
      
      .drive_busy     (drive_busy),
      
      .spi_cs_n       (spi_cs_n),
      
      .spi_read_done  (spi_read_done),
      .rdsr_en        (rdsr_en),
      .rdsr_done      (rdsr_done),
      
      .wren_en        (wren_en),
      .wren_done      (wren_done),
      
      .pp_en          (pp_en),
      .wr_addr        (wr_addr),
      .wr_len         (wr_len),
      .pp_done        (pp_done),
      
      .be_en          (be_en),
      .be_done        (be_done),
      
      .se_en          (se_en),
      .se_addr        (se_addr),
      .se_done        (se_done),
      
      .rdid_en        (rdid_en),
      .rdid_done      (rdid_done),
      
      .read_en        (read_en),
      .rd_addr        (rd_addr),
      .rd_len         (rd_len),
      .read_done      (read_done),
      
      .mux_sel        (mux_sel)
    );
  
  rd_fifo  rd_fifo_inst (
      .aclr           ( ~rst_n ),
      .clock          ( clk ),
      .data           ( rddata ),
      .rdreq          ( rdfifo_rd ),
      .wrreq          ( rd_fifo_wr ),
      .empty          ( rdfifo_rdempty ),
      .q              ( rdfifo_rdata )
    );
  
  wr_fifo  wr_fifo_inst (
      .aclr           ( ~rst_n ),
      .clock          ( clk ),
      .data           ( wrfifo_data ),
      .rdreq          ( wr_fifo_rd ),
      .wrreq          ( wrfifo_wr ),
      .q              ( wrdata )
    );
  
  read_ctrl read_ctrl_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .read_en          (read_en),
      .rd_addr          (rd_addr),
      .rd_len           (rd_len),
      
      .rddata           (rddata),
      .rd_fifo_wr       (rd_fifo_wr),
      
      .read_done        (read_done),
      
      .read_send_en     (read_send_en),
      .read_send_data   (read_send_data),
      .spi_send_done    (spi_send_done),
      
      .read_read_en     (read_read_en),
      .spi_read_done    (spi_read_done),
      .spi_read_data    (spi_read_data)
    );


  rdid rdid_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .rdid_en          (rdid_en),
      .rdid_done        (rdid_done),
      
      .rdid_send_en     (rdid_send_en),
      .rdid_send_data   (rdid_send_data),
      .spi_send_done    (spi_send_done),
      
      .rdid_read_en     (rdid_read_en),
      .spi_read_done    (spi_read_done),
      .spi_read_data    (spi_read_data)
    );
    
  rdsr rdsr_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .rdsr_en          (rdsr_en),
      .rdsr_done        (rdsr_done),
      
      .rdsr_send_en     (rdsr_send_en),
      .rdsr_send_data   (rdsr_send_data),
      .spi_send_done    (spi_send_done),
      
      .rdsr_read_en     (rdsr_read_en),
      .spi_read_data    (spi_read_data),
      .spi_read_done    (spi_read_done)
    );
  
  pp pp_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .pp_en            (pp_en),
      .pp_done          (pp_done),
      .wr_fifo_rd       (wr_fifo_rd),
      .wrdata           (wrdata),
      .wr_len           (wr_len),
      .wr_addr          (wr_addr),
      
      .pp_send_en       (pp_send_en),
      .pp_send_data     (pp_send_data),
      .spi_send_done    (spi_send_done)
    );
  
  se se_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .se_en            (se_en),
      .se_addr          (se_addr),
      .se_done          (se_done),
      
      .se_send_en       (se_send_en),
      .se_send_data     (se_send_data),
      .spi_send_done    (spi_send_done)
    );
  
  wren wren_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .wren_en          (wren_en),
      .wren_done        (wren_done),
      
      .wren_send_en     (wren_send_en),
      .wren_send_data   (wren_send_data),
      .spi_send_done    (spi_send_done)
    );


  be be_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .be_en            (be_en),
      .be_done          (be_done),
      
      .be_send_en       (be_send_en),
      .be_send_data     (be_send_data),
      .spi_send_done    (spi_send_done)
    );
  
  mux7_1 mux7_1_inst(


      .rdsr_send_en     (rdsr_send_en),
      .rdsr_send_data   (rdsr_send_data),
      .rdsr_read_en     (rdsr_read_en),
      
      .pp_send_en       (pp_send_en),
      .pp_send_data     (pp_send_data),
      
      .wren_send_en     (wren_send_en),
      .wren_send_data   (wren_send_data),
      
      .be_send_en       (be_send_en),
      .be_send_data     (be_send_data),
      
      .se_send_en       (se_send_en),
      .se_send_data     (se_send_data),
      
      .rdid_send_en     (rdid_send_en),
      .rdid_send_data   (rdid_send_data),
      .rdid_read_en     (rdid_read_en),
      
      .read_send_en     (read_send_en),
      .read_send_data   (read_send_data),
      .read_read_en     (read_read_en),
      
      .mux_sel          (mux_sel),
      
      .spi_send_en      (spi_send_en),
      .spi_send_data    (spi_send_data),
      .spi_read_en      (spi_read_en)
    );
  
  spi_8bit_drive spi_8bit_drive_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .spi_send_en      (spi_send_en),
      .spi_send_data    (spi_send_data),
      .spi_send_done    (spi_send_done),
      
      .spi_read_en      (spi_read_en),
      .spi_read_data    (spi_read_data),
      .spi_read_done    (spi_read_done),
      
      .spi_sclk         (spi_sclk),
      .spi_mosi         (spi_mosi),
      .spi_miso         (spi_miso)
  );
  
endmodule

 

RTL仿真

本次设计涉及到读取flash的id以及状态寄存器,所以在仿真时需要加入仿真模型。仿真模型放在msim的m25p16_sim_module中。m25p16为仿真模型的顶层文件。

由于读写和擦除的时间较长,RTL仿真中,将只仿真RDSR和RDID,其他的功能测试在板级测试时进行。

仿真代码如下:

 

`timescale 1ns/1ps


module m25p16_drive_tb;


  reg             clk;
  reg             rst_n;
  
  wire            drive_busy;
  
  wire            spi_cs_n;
  wire            spi_sclk;
  wire            spi_mosi;
  wire            spi_miso;


  m25p16_drive m25p16_drive_inst(


      .clk              (clk),
      .rst_n            (rst_n),
      
      .wrfifo_wr        (1'b0),
      .wrfifo_data      (8'd0),
      
      .flag_be          (1'b0),
      .flag_se          (1'b0),
      .flag_wr          (1'b0),
      .flag_rd          (1'b0),
      
      .addr             (24'd0),
      .len              (9'd0),
      
      .rdfifo_rd        (1'b0),
      .rdfifo_rdata     (),
      .rdfifo_rdempty   (),
      
      .drive_busy       (drive_busy),
      
      .spi_cs_n         (spi_cs_n),
      .spi_sclk         (spi_sclk),
      .spi_mosi         (spi_mosi),
      .spi_miso         (spi_miso)
    );


  m25p16 m25p16_inst(
      .c                (spi_sclk),
      .data_in          (spi_mosi),
      .s                (spi_cs_n),
      .w                (1'b1),
      .hold             (1'b1),
      .data_out         (spi_miso)
    );


  initial clk = 1'b0;
  always # 50 clk = ~clk;
  
  initial begin
    rst_n = 1'b0;
    # 201
    rst_n = 1'b1;
    @ (negedge drive_busy);
    # 2000
    $stop;
  end


endmodule

 

在设置testbench时,注意将所有文件全部添加到文件中。

SPI协议

选择testbench时,注意选中设置的m25p16_drive_tb。

SPI协议

利用modelsim仿真,可以得出如下RTL仿真波形。

SPI协议

读到ID,以及检测WIP都是正确的。

板级测试

由于m25p16的时序原因,整个设计工作在10MHz(利用PLL产生)。

在进行测试控制时,对最后一个扇区进行擦除;对最后一个扇区的第一页进行写入数据100个(1至100);对最后一个扇区的第一个进行读取,验证数据是否为1至100。

测试的控制模块命名为test_ctrl。

此模块采用状态机实现。WRFIFO(将1至100写入wrfifo中)、SE(扇区擦除)、PP(写入flash)、RD(读出flash)、WAIT_RD(等待读取)、CHECK( 检测读出的数据的正确性)。

SPI协议

设计代码为:

 

module test_ctrl (


  input     wire                  clk,
  input     wire                  rst_n,
  
  output    reg                   wrfifo_wr,
  output    reg     [7:0]         wrfifo_data,
  
  output    reg                   flag_se,
  output    reg                   flag_wr,
  output    reg                   flag_rd,
  
  input     wire                  drive_busy,
  
  output    reg                   rdfifo_rd,
  input     wire    [7:0]         rdfifo_rdata
);


  localparam      WRFIFO      =     6'b000_001;
  localparam      SE          =     6'b000_010;
  localparam      PP          =     6'b000_100;
  localparam      RD          =     6'b001_000;
  localparam      WAIT_RD     =     6'b010_000;
  localparam      CHECK       =     6'b100_000;
  
  reg               [5:0]         c_state;
  reg               [5:0]         n_state;
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= WRFIFO;
    else
      c_state <= n_state;
  end
  
  always @ * begin
    case (c_state)
      WRFIFO        :   begin
        if (wrfifo_data == 8'd100)
          n_state = SE;
        else
          n_state = WRFIFO;
      end
      
      SE            :   begin
        if (drive_busy == 1'b0)
          n_state = PP;
        else
          n_state = SE;
      end
      
      PP            :   begin
        if (drive_busy == 1'b0)
          n_state = RD;
        else
          n_state = PP;
      end
      
      RD            :   begin
        if (drive_busy == 1'b0)
          n_state = WAIT_RD;
        else
          n_state = RD;
      end
    
      WAIT_RD       :   begin
        if (drive_busy == 1'b0)
          n_state = CHECK;
        else
          n_state = WAIT_RD;
      end


      CHECK         :   begin
        n_state = CHECK;
      end


      default       :   n_state = WRFIFO;
      
    endcase
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wrfifo_data <= 8'd0;
    else
      if (c_state == WRFIFO && wrfifo_data < 8'd100)
        wrfifo_data <= wrfifo_data + 1'b1;
      else
        wrfifo_data <= 8'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wrfifo_wr <= 1'd0;
    else
      if (c_state == WRFIFO && wrfifo_data < 8'd100)
        wrfifo_wr <= 1'd1;
      else
        wrfifo_wr <= 1'd0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      flag_se <= 1'b0;
    else
      if (c_state == SE && drive_busy == 1'b0)
        flag_se <= 1'b1;
      else
        flag_se <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      flag_wr <= 1'b0;
    else
      if (c_state == PP && drive_busy == 1'b0)
        flag_wr <= 1'b1;
      else  
        flag_wr <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      flag_rd <= 1'b0;
    else
      if (c_state == RD && drive_busy == 1'b0)
        flag_rd <= 1'b1;
      else
        flag_rd <= 1'b0;
  end
  
  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdfifo_rd <= 1'b0;
    else
      if (c_state == WAIT_RD && drive_busy == 1'b0)
        rdfifo_rd <= 1'b1;
      else
        if (c_state == CHECK && rdfifo_rdata == 8'd99)
          rdfifo_rd <= 1'b0;
        else  
          rdfifo_rd <= rdfifo_rd;
  end
  
endmodule

 

将test模块设置为顶层。在test模块中,m25p16_drive例化中,对于整片擦除不做控制,对于addr直接指向最后一个扇区的第一页,len指定为100。

代码为:

 

module test (


  input     wire                  clk,
  input     wire                  rst_n,
  
  output    wire                  spi_cs_n,
  output    wire                  spi_sclk,
  output    wire                  spi_mosi,
  input     wire                  spi_miso
);


  wire                            wrfifo_wr;
  wire              [7:0]         wrfifo_data;
  wire                            flag_rd;
  wire                            flag_se;
  wire                            flag_wr;
  wire                            drive_busy;
  wire                            rdfifo_rd;
  wire              [7:0]         rdfifo_rdata;
  
  wire                            clk_10m;
  wire                            pll_locked;
  
  pll_test  pll_test_inst (
      .areset             ( ~rst_n ),
      .inclk0             ( clk ),
      .c0                 ( clk_10m ),
      .locked             ( pll_locked )
    );


  test_ctrl test_ctrl_inst(


      .clk                (clk_10m),
      .rst_n              (pll_locked),
      
      .wrfifo_wr          (wrfifo_wr),
      .wrfifo_data        (wrfifo_data),
      
      .flag_se            (flag_se),
      .flag_wr            (flag_wr),
      .flag_rd            (flag_rd),
      
      .drive_busy         (drive_busy),
      
      .rdfifo_rd          (rdfifo_rd),
      .rdfifo_rdata       (rdfifo_rdata)
    );
    
  m25p16_drive m25p16_drive_inst(


      .clk              (clk_10m),
      .rst_n            (pll_locked),
      
      .wrfifo_wr        (wrfifo_wr),
      .wrfifo_data      (wrfifo_data),
      
      .flag_be          (1'b0),
      .flag_se          (flag_se),
      .flag_wr          (flag_wr),
      .flag_rd          (flag_rd),
      
      .addr             (24'hff0000),
      .len              (9'd100),
      
      .rdfifo_rd        (rdfifo_rd),
      .rdfifo_rdata     (rdfifo_rdata),
      .rdfifo_rdempty   (),
      
      .drive_busy       (drive_busy),
      
      .spi_cs_n         (spi_cs_n),
      .spi_sclk         (spi_sclk),
      .spi_mosi         (spi_mosi),
      .spi_miso         (spi_miso)
    );
  
endmodule

 

由于开发板上的flash是为FPGA进行保存配置信息的,所以管脚都连接在专用管脚上,本次实验需要将这专用管脚配置为普通io。

右击器件型号,选择device。

SPI协议

点击device and pin options。

SPI协议

选择Dual-purpose pins,将其中所有的功能改为普通IO。

SPI协议

点击ok后,即可进行综合分析。

连接开发板和PC,打开逻辑分析仪。

采样时钟选择10MHz(PLL 的c0),采样深度设置为2K。

SPI协议

观测信号如下图所示。

SPI协议

首先将wrfifo_wr的触发条件设置为上升沿。点击触发后,按下复位按键。触发后,可以看到写入数据1至100后,然后进行SE命令。

SPI协议

将rdfifo_rd的触发条件设置为上升沿(将wrfifo_wr触发条件修改为donot care)。点击触发后,按下复位按键。

SPI协议

通过仿真和下板实测,验证控制器设计正确。





审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分