SPI FLASH+FATFS+USB MASS STORAGE硬件驱动

接口/总线/驱动

1125人已加入

描述

一、背景

1.1 硬件驱动层

工作也有几年了,越来越觉得有必要做一个类似于LINUX的硬件驱动层,可以屏蔽所有硬件差异,再做新的项目,需要更改主控或者外设时,只需要更改相关的芯片支持包,让我们更加专注于业务逻辑层的开发。

1.2 目标

RTTHREAD已经有现成的相关软件框架,到时候可以借鉴一下,目前还是想自己写代码实现一遍以下的东西,只有真正做起来的才会发现问题,才会有进步的可能:

bootloader+
hardware_driver_layer+
fatfs+
usb host,usb device+
lcd+touch+lvgl+
freertos(rtthread)+
memory_manage+
(nandflash or norflash)+(psramor+sdram)+
script(java,lua,python,jerryscript)+
openharmony_ui_kit_ace_lite

二、目标状态

目前已经实现了

bootloader+
fatfs+

usb device(usb mass storage)+
script(java)

下一个目标是lcd+touch+lvgl

三、SPI FLASH(NOR FLASH)

nor flash操作起来非常方便,不需要关系nand flash的虚拟地址映射、坏块管理、ECC等问题。

3.1 w25q128

w25q128是winbond公司的,顾名思义有128Mbit容量,也就是16M字节大小,每页有256字节,每个扇区有4096字节,每个块有64K,每次可擦除一个扇区字节大小。

3.2 驱动程序
这里使用的是spi2作为通信接口

#include "stdio.h"


#include "common.h"
#include "stm32_kernel.h"
#include "stm32f10x_spi.h"
#include "stm32_spi.h"    
#include "deviceaccess_spi.h"    
#include "deviceaccess_gpio.h"    


#define W25Q80   0XEF13   
#define W25Q16   0XEF14
#define W25Q32   0XEF15
#define W25Q64   0XEF16
#define W25Q128  0XEF17


////////////////////////////////////////////////////////////////////////////

//指令表
#define W25X_WriteEnable    0x06 
#define W25X_WriteDisable    0x04 
#define W25X_ReadStatusReg    0x05 
#define W25X_WriteStatusReg    0x01 
#define W25X_ReadData      0x03 
#define W25X_FastReadData    0x0B 
#define W25X_FastReadDual    0x3B 
#define W25X_PageProgram    0x02 
#define W25X_BlockErase      0xD8 
#define W25X_SectorErase    0x20 
#define W25X_ChipErase      0xC7 
#define W25X_PowerDown      0xB9 
#define W25X_ReleasePowerDown  0xAB 
#define W25X_DeviceID      0xAB 
#define W25X_ManufactDeviceID  0x90 
#define W25X_JedecDeviceID    0x9F 


void W25QXX_Init(void);
u16  W25QXX_ReadID(void);            //读取FLASH ID
u8   W25QXX_ReadSR(void);            //读取状态寄存器 
void W25QXX_Write_SR(u8 sr);        //写状态寄存器
void W25QXX_Write_Enable(void);      //写使能 
void W25QXX_Write_Disable(void);    //写保护
void W25QXX_Write_NoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite);
void W25QXX_Read(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead);   //读取flash
void W25QXX_Write(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite);//写入flash
void W25QXX_Erase_Chip(void);          //整片擦除
void W25QXX_Erase_Sector(u32 Dst_Addr);  //扇区擦除
void W25QXX_Wait_Busy(void);             //等待空闲
void W25QXX_PowerDown(void);          //进入掉电模式
void W25QXX_WAKEUP(void);        //唤醒




//GPIOx = P*32+N
deviceaccess_spi_t spi_2 = {SPI_2,SPI_MODE_MASTER,8,SPI_BIT_ORDER_MSB,SPI_CPOL_H,SPI_CPHA_EDGE_2};
deviceaccess_gpio_t gpio_ext_flash_cs = {44,GPIO_MODE_PUSHPULL,GPIO_DIRECTION_OUTPUT,TRUE,NULL};


//#define  W25QXX_CS     PBout(12)      //W25QXX的片选信号


#define SPI_FLASH_CS_H  {g_deviceaccess_gpio_control(&gpio_ext_flash_cs,CMD_WRITE,TRUE);}
#define SPI_FLASH_CS_L  {g_deviceaccess_gpio_control(&gpio_ext_flash_cs,CMD_WRITE,FALSE);}


uint16_t get_flash_id = 0; 


u16 W25QXX_ReadID(void)
{
    u16 Temp = 0;    
    uint8_t set_tx_buffer[] = {0x90,0xFF,0xFF,0xFF};
    uint8_t set_rx_buffer[2];


    SPI_FLASH_CS_L;    


    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);//发送读取ID命令      
    g_deviceaccess_spi_control(&spi_2,CMD_READ,set_rx_buffer,LENGTH_OF_ARRAY(set_rx_buffer),NULL);     
    Temp|=set_rx_buffer[0]< < 8;  
    Temp|=set_rx_buffer[1];   
    SPI_FLASH_CS_H;            

    return Temp;
}


void W25QXX_Init(void)
{  
    g_deviceaccess_gpio_control(&gpio_ext_flash_cs,CMD_OPEN,NULL);

    SPI_FLASH_CS_H;        //SPI FLASH不选中


    g_deviceaccess_spi_control(&spi_2, CMD_OPEN,NULL,NULL,NULL);


    W25QXX_ReadID();//读取FLASH ID.  
    get_flash_id=W25QXX_ReadID();//读取FLASH ID.
    printf("get_flash_id=%xrn",get_flash_id);
}  


//读取W25QXX的状态寄存器
//BIT7  6   5   4   3   2   1   0
//SPR   RV  TB BP2 BP1 BP0 WEL BUSY
//SPR:默认0,状态寄存器保护位,配合WP使用
//TB,BP2,BP1,BP0:FLASH区域写保护设置
//WEL:写使能锁定
//BUSY:忙标记位(1,忙;0,空闲)
//默认:0x00
u8 W25QXX_ReadSR(void)   
{  
    u8 byte=0;   
    SPI_FLASH_CS_L;                            //使能器件   
    uint8_t set_tx_buffer[1] = {W25X_ReadStatusReg};
    uint8_t set_rx_buffer[1] = {0};
    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL); 
    g_deviceaccess_spi_control(&spi_2,CMD_READ,set_rx_buffer,LENGTH_OF_ARRAY(set_rx_buffer),NULL);
    byte=set_rx_buffer[0];          //读取一个字节  
    SPI_FLASH_CS_H;                            //取消片选     
    return byte;   
} 
//写W25QXX状态寄存器
//只有SPR,TB,BP2,BP1,BP0(bit 7,5,4,3,2)可以写!!!
void W25QXX_Write_SR(u8 sr)   
{   
    SPI_FLASH_CS_L;                            //使能器件   
    uint8_t set_tx_buffer[] = {W25X_WriteStatusReg,sr};
    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL); 
    SPI_FLASH_CS_H;                            //取消片选             
}   
//W25QXX写使能  
//将WEL置位   
void W25QXX_Write_Enable(void)   
{
    SPI_FLASH_CS_L;                            //使能器件   
    uint8_t set_tx_buffer[1] = {W25X_WriteEnable};
    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);
    SPI_FLASH_CS_H;                             //取消片选             
} 
//W25QXX写禁止  
//将WEL清零  
void W25QXX_Write_Disable(void)   
{  
    SPI_FLASH_CS_L;                            //使能器件   
    uint8_t set_tx_buffer[1] = {W25X_WriteDisable};
    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);
    SPI_FLASH_CS_H;                            //取消片选             
}     


//读取SPI FLASH  
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead)   
{ 
    u16 i;                           
    SPI_FLASH_CS_L;                              //使能器件  

    uint8_t set_tx_buffer[] = {W25X_ReadData,(u8)((ReadAddr) > >16),(u8)((ReadAddr) > >8),(u8)ReadAddr};


    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);
    g_deviceaccess_spi_control(&spi_2,CMD_READ,pBuffer,NumByteToRead,NULL);

    SPI_FLASH_CS_H;                      
}  
//SPI在一页(0~65535)内写入少于256个字节的数据
//在指定地址开始写入最大256字节的数据
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!   
void W25QXX_Write_Page(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{
    u16 i;  
    uint8_t set_tx_buffer[] = {W25X_PageProgram,(u8)((WriteAddr) > >16),(u8)((WriteAddr) > >8),(u8)(WriteAddr)};

    W25QXX_Write_Enable();                    //SET WEL 

    SPI_FLASH_CS_L;                              //使能器件   

    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);

    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,pBuffer,NumByteToWrite,NULL);

    SPI_FLASH_CS_H;                              //取消片选 
    W25QXX_Wait_Busy();                 //等待写入结束
} 
//无检验写SPI FLASH 
//必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
//具有自动换页功能 
//在指定地址开始写入指定长度的数据,但是要确保地址不越界!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大65535)
//CHECK OK
void W25QXX_Write_NoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)   
{             
  u16 pageremain;     
  pageremain=256-WriteAddr%256; //单页剩余的字节数           
  if(NumByteToWrite<=pageremain)pageremain=NumByteToWrite;//不大于256个字节
  while(1)
  {     
    W25QXX_Write_Page(pBuffer,WriteAddr,pageremain);
    if(NumByteToWrite==pageremain)break;//写入结束了
     else //NumByteToWrite >pageremain
    {
      pBuffer+=pageremain;
      WriteAddr+=pageremain;  


      NumByteToWrite-=pageremain;        //减去已经写入了的字节数
      if(NumByteToWrite >256)pageremain=256; //一次可以写入256个字节
      else pageremain=NumByteToWrite;     //不够256个字节了
    }
  }      
} 
//写SPI FLASH  
//在指定地址开始写入指定长度的数据
//该函数带擦除操作!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)            
//NumByteToWrite:要写入的字节数(最大65535)   
u8 W25QXX_BUFFER[4096];     
void W25QXX_Write(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)   
{ 
  u32 secpos;
  u16 secoff;
  u16 secremain;     
   u16 i;    
  u8 * W25QXX_BUF;    
     W25QXX_BUF=W25QXX_BUFFER;       
   secpos=WriteAddr/4096;//扇区地址  
  secoff=WriteAddr%4096;//在扇区内的偏移
  secremain=4096-secoff;//扇区剩余空间大小   
   //printf("ad:%X,nb:%Xrn",WriteAddr,NumByteToWrite);//测试用
   if(NumByteToWrite<=secremain)secremain=NumByteToWrite;//不大于4096个字节
  while(1) 
  {  
    W25QXX_Read(W25QXX_BUF,secpos*4096,4096);//读出整个扇区的内容
    for(i=0;i< secremain;i++)//校验数据
    {
      if(W25QXX_BUF[secoff+i]!=0XFF)break;//需要擦除      
    }
    if(i< secremain)//需要擦除
    {
      W25QXX_Erase_Sector(secpos);    //擦除这个扇区
      for(i=0;i< secremain;i++)         //复制
      {
        W25QXX_BUF[i+secoff]=pBuffer[i];    
      }
      W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);//写入整个扇区  


    }else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);//写已经擦除了的,直接写入扇区剩余区间.            
    if(NumByteToWrite==secremain)break;//写入结束了
    else//写入未结束
    {
      secpos++;//扇区地址增1
      secoff=0;//偏移位置为0    


         pBuffer+=secremain;          //指针偏移
      WriteAddr+=secremain;        //写地址偏移     
         NumByteToWrite-=secremain;      //字节数递减
      if(NumByteToWrite >4096)secremain=4096;//下一个扇区还是写不完
      else secremain=NumByteToWrite;    //下一个扇区可以写完了
    }   
  };   
}
//擦除整个芯片      
//等待时间超长...
void W25QXX_Erase_Chip(void)   
{        
    uint8_t set_tx_buffer[1] = {W25X_ChipErase};
    W25QXX_Write_Enable();                      //SET WEL 
    W25QXX_Wait_Busy();   
    SPI_FLASH_CS_L;                              //使能器件   


    W25QXX_Write_Enable();                    //SET WEL 

    SPI_FLASH_CS_L;                              //使能器件   

    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);


    SPI_FLASH_CS_H;                              //取消片选            

    W25QXX_Wait_Busy();                  //等待芯片擦除结束
}   


//擦除一个扇区
//Dst_Addr:扇区地址 根据实际容量设置
//擦除一个山区的最少时间:150ms
void W25QXX_Erase_Sector(u32 Dst_Addr)   
{  
    uint8_t set_tx_buffer[] = {W25X_SectorErase,(u8)((Dst_Addr) > >16),(u8)((Dst_Addr) > >8),(u8)Dst_Addr};

  //监视falsh擦除情况,测试用   
    //printf("fe:%xrn",Dst_Addr);    
    Dst_Addr*=4096;
    W25QXX_Write_Enable();                    //SET WEL    
    W25QXX_Wait_Busy();   
    SPI_FLASH_CS_L;                              //使能器件   

    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);


    SPI_FLASH_CS_H;                              //取消片选             

    W25QXX_Wait_Busy();                  //等待擦除完成
}  


//等待空闲
void W25QXX_Wait_Busy(void)   
{   
  while((W25QXX_ReadSR()&0x01)==0x01);      // 等待BUSY位清空
}  


//进入掉电模式
void W25QXX_PowerDown(void)   
{ 
    uint8_t set_tx_buffer[] = {W25X_PowerDown};

    SPI_FLASH_CS_L;                                //使能器件   

    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);

    SPI_FLASH_CS_H;                              //取消片选             
    //delay_us(3);                               //等待TPD  
}   
//唤醒
void W25QXX_WAKEUP(void)   
{  
    uint8_t set_tx_buffer[] = {W25X_ReleasePowerDown};

    SPI_FLASH_CS_L;                              //使能器件   

    g_deviceaccess_spi_control(&spi_2,CMD_WRITE,set_tx_buffer,LENGTH_OF_ARRAY(set_tx_buffer),NULL);

    SPI_FLASH_CS_H;                              //取消片选             
    //delay_us(3);                              //等待TRES1
}

四、 FATFS

4.1 c源文件

这里就用到了2个c文件:diskio.c,ff.c
4.2 配置
打开ffconf.h头文件,作以下更改

#define  _USE_LFN  0
#define  _MIN_SS    512
#define  _MAX_SS    4096

4.3 接口代码

DSTATUS disk_initialize 
(
  BYTE pdrv        /* Physical drive nmuber to identify the drive */
)
{
  u8 res=0;      
  switch(pdrv)
  {
    case EX_FLASH://外部flash
      W25QXX_Init();
       break;
    default:
      res=1; 
  }     

  if(res)return  STA_NOINIT;

  else return 0; //初始化成功 
} 


DRESULT disk_read (
  BYTE pdrv,    /* Physical drive nmuber to identify the drive */
  BYTE *buff,    /* Data buffer to store read data */
  DWORD sector,  /* Sector address in LBA */
  UINT count    /* Number of sectors to read */
)
{
  u8 res=0; 
    if (!count)return RES_PARERR;//count不能等于0,否则返回参数错误        
  switch(pdrv)
  {
    case EX_FLASH://外部flash
      sector+=CONFIG_START_SECTOR;

      for(;count >0;count--)
      {
        W25QXX_Read(buff,sector*FLASH_SECTOR_SIZE,FLASH_SECTOR_SIZE);
        sector++;
        buff+=FLASH_SECTOR_SIZE;
      }
      res=0;
      break;
    default:
      res=1; 
  }
    if(res==0x00)return RES_OK;   
    else return RES_ERROR;     
}


DRESULT disk_write (
  BYTE pdrv,      /* Physical drive nmuber to identify the drive */
  const BYTE *buff,  /* Data to be written */
  DWORD sector,    /* Sector address in LBA */
  UINT count      /* Number of sectors to write */
)
{
  u8 res=0;  
    if (!count)return RES_PARERR;//count不能等于0,否则返回参数错误        
  switch(pdrv)
  {
    case EX_FLASH://外部flash
      sector+=CONFIG_START_SECTOR;

      SwData_DetFromFlash(sector*FLASH_SECTOR_SIZE,count*FLASH_SECTOR_SIZE);
      for(;count >0;count--)
      {                        
      //  W25QXX_Write((u8*)buff,sector*FLASH_SECTOR_SIZE,FLASH_SECTOR_SIZE);
        W25QXX_Write_NoCheck((u8*)buff,sector*FLASH_SECTOR_SIZE,FLASH_SECTOR_SIZE);
        sector++;
        buff+=FLASH_SECTOR_SIZE;
      }
      res=0;
      break;
    default:
      res=1; 
  }
    //处理返回值,将SPI_SD_driver.c的返回值转成ff.c的返回值
    if(res == 0x00)return RES_OK;   
    else return RES_ERROR;  
}


DRESULT disk_ioctl (
  BYTE pdrv,    /* Physical drive nmuber (0..) */
  BYTE cmd,    /* Control code */
  void *buff    /* Buffer to send/receive control data */
)
{
DRESULT res;                         


      switch(cmd)
      {
        case CTRL_SYNC:
        res = RES_OK; 
            break;   
        case GET_SECTOR_SIZE:
            *(WORD*)buff = FLASH_SECTOR_SIZE;
            res = RES_OK;
            break;   
        case GET_BLOCK_SIZE:
            *(WORD*)buff = FLASH_BLOCK_SIZE;
            res = RES_OK;
            break;   
        case GET_SECTOR_COUNT:
            *(DWORD*)buff = FLASH_SECTOR_COUNT;
            res = RES_OK;
            break;
        default:
            res = RES_PARERR;
            break;
      }
    return res;
}

4.4 注意事项
返回给文件系统的扇区大小必须是flash实际的扇区大小,可以自定义文件系统的大小,
格式化文件系统时要选择带引导分区的类型即:res=f_mkfs("",0,4096):

写操作时不应使用W25QXX_Write,而是先计算需要擦除的大小,来进行擦除再进行写操作

#define FLASH_SECTOR_SIZE          4096    
#define FLASH_BLOCK_SIZE     16 
u16      FLASH_SECTOR_COUNT= 2696;

4.5 测试代码

u8 exf_getfree(u8 *drv,u32 *total,u32 *free)
{
  FATFS *fs1;
  u8 res;
    u32 fre_clust=0, fre_sect=0, tot_sect=0;
    //得到磁盘信息及空闲簇数量
    res =(u32)f_getfree((const TCHAR*)drv, (DWORD*)&fre_clust, &fs1);
    if(res==0)
  {                         
      tot_sect=(fs1- >n_fatent-2)*fs1- >csize;  //得到总扇区数
      fre_sect=fre_clust*fs1- >csize;      //得到空闲扇区数     
#if _MAX_SS!=512                  //扇区大小不是512字节,则转换为512字节
    tot_sect*=fs1- >ssize/512;
    fre_sect*=fs1- >ssize/512;
#endif    
    *total=tot_sect > >1;  //单位为KB
    *free=fre_sect > >1;  //单位为KB 
   }
  return res;
}




    res = f_mount(&temp_fs,"",1); 

    if(res!=FR_OK)//FLASH磁盘,FAT文件系统错误,重新格式化FLASH
    {
        printf("Flash Disk Formatting...");  //格式化FLASH

        W25QXX_Erase_Chip();

        res=f_mkfs("",0,4096);

        delay_ms(1000);
    }  


    while(exf_getfree("",&total,&free))  //得到SD卡的总容量和剩余容量
    {
      printf("EXTFLASH Fatfs Error!");
      delay_ms(200);       
    }  

    printf("FATFS OK!");   
    printf("SD Total Size:%dMB",total > >10);   
    printf("SD  Free Size:%dMB",free > >10);

    char *filepath = "1.txt";
    UINT br;


    open_result = f_mount(&temp_fs,"",1);


    open_result =f_open(&f_txt,(const TCHAR*)filepath,FA_CREATE_ALWAYS|FA_WRITE);


    if(open_result==FR_OK)
    {
        printf("open file okn");


        read_result=f_write(&f_txt,data,sizeof(data)/sizeof(data[0]),(UINT*)&br);


        if(read_result==FR_OK)
        {
            printf("write okn");
            printf("br=%dn",br);
        }


    f_close(&f_txt);


    open_result =f_open(&f_txt,(const TCHAR*)filepath,FA_READ);


    printf("open_result=%dn",open_result);


    if(open_result==FR_OK)
    {
        read_result=f_read(&f_txt,data_read,sizeof(data)/sizeof(data[0]),(UINT*)&br);


        printf("read_result=%dn",read_result);


        if(read_result==FR_OK)
        {
            int i = 0;


            printf("read okn");
            printf("br=%dn",br);


            for(i=0;i< sizeof(data_read)/sizeof(data_read[0]);i++)
            {
                printf("data_read[%d]=%cn",i,data_read[i]);
            }
        }


        f_close(&f_txt);
    }


    }
    else
    {
        printf("open_result=%dn",open_result);
    }

五、USB MASS STORAGE
5.1 上报磁盘数量
u8 Max_Lun =MAX_LUN;通过更爱MAX_LUN的定义来更改磁盘数量

uint8_t *Get_Max_Lun(uint16_t Length)
{
  if (Length == 0)
  {
    pInformation- >Ctrl_Info.Usb_wLength = LUN_DATA_LENGTH;
    return 0;
  }
  else
  {
    return((uint8_t*)(&Max_Lun));
  }
}

5.2 usb缓存大小定义
更改USB缓存大小为flash的实际扇区大小4K

memory.c中定义Data_Bufferw1024,也就是4096
u32 Data_Buffer[1024];

5.3 接口代码

uint16_t MAL_Init(uint8_t lun)
{ 
  u16 Status=MAL_OK;   
  switch (lun)
  {
    case 0:         


      break;         
    case 1:         
      break;      
    default:
      return MAL_FAIL;
  }
  return Status;
}


uint16_t MAL_Write(uint8_t lun, uint64_t Memory_Offset, uint32_t *Writebuff, uint16_t Transfer_Length)
{
  u8 STA;
  switch (lun)    //这里,根据lun的值确定所要操作的磁盘
  {
    case 0:       //磁盘0为 SPI FLASH盘  
      STA=0;
      SwData_DetFromFlash(CONFIG_FATFS_START_ADDRESS+Memory_Offset,Transfer_Length);
        W25QXX_Write_NoCheck((u8*)Writebuff,CONFIG_FATFS_START_ADDRESS+Memory_Offset,Transfer_Length);
      break; 
    default:
      return MAL_FAIL;
  }
  if(STA!=0)return MAL_FAIL;
  return MAL_OK; 
}


uint16_t MAL_Read(uint8_t lun, uint64_t Memory_Offset, uint32_t *Readbuff, uint16_t Transfer_Length)
{
  u8 STA;
  switch (lun)    //这里,根据lun的值确定所要操作的磁盘
  {
    case 0:      //磁盘0为 SPI FLASH盘   
      STA=0;
      W25QXX_Read((u8*)Readbuff, CONFIG_FATFS_START_ADDRESS+Memory_Offset, Transfer_Length);         
      break;            
    default:
      return MAL_FAIL;
  }
  if(STA!=0)return MAL_FAIL;
  return MAL_OK;
}


uint16_t MAL_GetStatus (uint8_t lun)
{
    switch(lun)
    {
    case 0:
      return MAL_OK;
    case 1:
      return MAL_OK; 
    default:
      return MAL_FAIL;
    } 
}
  1. 4 初始化代码
Mass_Memory_Size[0]=1024*1024*10;  //前12M字节
    Mass_Block_Size[0] =4096;      //设置SPI FLASH的操作扇区大小为512
    Mass_Block_Count[0]=Mass_Memory_Size[0]/Mass_Block_Size[0];      

     delay_ms(1800);
    usb_port_set(0);   //USB先断开
    delay_ms(300);
    usb_port_set(1);  //USB再次连接     
    //USB配置
    USB_Interrupts_Config();    
    Set_USBClock();   
    USB_Init();      
    delay_ms(1800);

六、遇到的坑

6.1 ID信息

可能是W25Q128的硬件有问题,在上电时需要读两次才能读到ID信息,但ID信息与数据手册上的对不上,可能IC是盗版的吧。

6.2 文件系统格式化失败

在格式化时最好加上整个flash或者指定大小的擦除操作再进行格式化

6.3 文件系统读写失败

在进行读操作时,可能是出现读到的数据全是错的问题,后来排查发现是W25QXX_Write的问题,更改为先查出再写后问题得到解决。

6.4 文件系统读不到正确的容量大小

将最大扇区和返回扇区大小更改为4096
6.5 USB MASS STORAGE打不开磁盘

将USB缓存区更改为总大小为flash实际扇区大小4096,在USB初始化前设置好扇区大小为实际的flash扇区大小,扇区数量,磁盘容量更改为实际需要

6.6 烧录文件系统到外部FLASH的方法
6.6.1 制作镜像文件

使用DiskGenius工具创建虚拟磁盘镜像文件,由于现有的磁盘分区工具只兼容512字节扇区的硬件,所以在文件系统所使用的写FLASH接口需要使用带检查的写操作,也就是在写的时候不影响其他扇区的数据,这样的话就可以兼容FATFS最大扇区为512字节的配置
6.6.2 烧录镜像文件到外部FLASH

6.7 加速FLASH访问

使用DMA方式进行SPI的读写

if(send_ptr != RT_NULL)
    {
        volatile uint8_t dummy_data;
        dma_init_type dma_init_struct;
        dma_reset(DMA2_CHANNEL5);
        dma_reset(DMA2_CHANNEL4);


        dma_default_para_init(&dma_init_struct);
        dma_init_struct.buffer_size = size;
        dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
        dma_init_struct.memory_base_addr = (uint32_t)&dummy_data;
        dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
        dma_init_struct.memory_inc_enable = FALSE;
        dma_init_struct.peripheral_base_addr = (uint32_t)(&spi_instance- >config- >spi_x- >dt);
        dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
        dma_init_struct.peripheral_inc_enable = FALSE;
        dma_init_struct.priority = DMA_PRIORITY_VERY_HIGH;
        dma_init_struct.loop_mode_enable = FALSE;
        dma_init(DMA2_CHANNEL4, &dma_init_struct);

        dma_init_struct.buffer_size = message- >length;
        dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
        dma_init_struct.memory_base_addr = (uint32_t)send_ptr;
        dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
        dma_init_struct.memory_inc_enable = TRUE;
        dma_init_struct.peripheral_base_addr = (uint32_t)(&spi_instance- >config- >spi_x- >dt);
        dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
        dma_init_struct.peripheral_inc_enable = FALSE;
        dma_init_struct.priority = DMA_PRIORITY_VERY_HIGH;
        dma_init_struct.loop_mode_enable = FALSE;
        dma_init(DMA2_CHANNEL5, &dma_init_struct);


        spi_i2s_dma_transmitter_enable(spi_instance- >config- >spi_x, TRUE);
        spi_i2s_dma_receiver_enable(spi_instance- >config- >spi_x, TRUE);


        dma_channel_enable(DMA2_CHANNEL4, TRUE);
        dma_channel_enable(DMA2_CHANNEL5, TRUE);


        while(dma_flag_get(DMA2_FDT4_FLAG) == RESET);
        dma_flag_clear(DMA2_FDT4_FLAG);


        dma_channel_enable(DMA2_CHANNEL5, FALSE);
        dma_channel_enable(DMA2_CHANNEL4, FALSE);


        spi_i2s_dma_receiver_enable(spi_instance- >config- >spi_x, FALSE);
        spi_i2s_dma_transmitter_enable(spi_instance- >config- >spi_x, FALSE);
    }
    else if(recv_ptr != RT_NULL)
    {
        uint8_t write_value = 0xA5;
        dma_init_type dma_init_struct;
        dma_reset(DMA2_CHANNEL5);
        dma_reset(DMA2_CHANNEL4);


        dma_default_para_init(&dma_init_struct);
        dma_init_struct.buffer_size = size;
        dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
        dma_init_struct.memory_base_addr = (uint32_t)&write_value;
        dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
        dma_init_struct.memory_inc_enable = FALSE;
        dma_init_struct.peripheral_base_addr = (uint32_t)(&spi_instance- >config- >spi_x- >dt);
        dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
        dma_init_struct.peripheral_inc_enable = FALSE;
        dma_init_struct.priority = DMA_PRIORITY_VERY_HIGH;
        dma_init_struct.loop_mode_enable = FALSE;
        dma_init(DMA2_CHANNEL5, &dma_init_struct);


        dma_init_struct.buffer_size = size;
        dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
        dma_init_struct.memory_base_addr = (uint32_t)recv_ptr;
        dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
        dma_init_struct.memory_inc_enable = TRUE;
        dma_init_struct.peripheral_base_addr = (uint32_t)(&spi_instance- >config- >spi_x- >dt);
        dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
        dma_init_struct.peripheral_inc_enable = FALSE;
        dma_init_struct.priority = DMA_PRIORITY_VERY_HIGH;
        dma_init_struct.loop_mode_enable = FALSE;
        dma_init(DMA2_CHANNEL4, &dma_init_struct);
        //
        spi_i2s_dma_transmitter_enable(spi_instance- >config- >spi_x, TRUE);
        spi_i2s_dma_receiver_enable(spi_instance- >config- >spi_x, TRUE);
        //
        dma_channel_enable(DMA2_CHANNEL4, TRUE);
        dma_channel_enable(DMA2_CHANNEL5, TRUE);


        while(dma_flag_get(DMA2_FDT4_FLAG) == RESET);
        dma_flag_clear(DMA2_FDT4_FLAG);


        dma_channel_enable(DMA2_CHANNEL5, FALSE);
        dma_channel_enable(DMA2_CHANNEL4, FALSE);


        spi_i2s_dma_receiver_enable(spi_instance- >config- >spi_x, FALSE);
        spi_i2s_dma_transmitter_enable(spi_instance- >config- >spi_x, FALSE);
    }
#endif
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分