嵌入式联网技术
嵌入式以太网不仅可用于工业现场实现现场节点的自动上网功能,而且还可以用于信息家电的以太网接口实现远程控制,具有很好的发展前景。文章介绍基于TMS320LF2407型DSP的嵌入式系统与LAN91C111型自适应10Mb/s/100Mb/s嵌入式以太网控制的接口电路及软硬件实现方法。
1 引言
目前关于嵌入式以太网的设计方案不是很多,其中大多是基于单片机的,缺点是速度慢、成本太高。DSP作为一种特殊的嵌入式微处理器系统,具有嵌入的协处理器和用于快速数据处理的并行数据通道,在嵌入式网络设备中引入DSP技术可以使嵌入式以太网变得更快、更便宜、更容易进行功能扩充。本文介绍了基于TMS320LF2407型的嵌入式系统与LAN91C111型自适应10Mb/s/100Mb/s嵌入式以太网控制芯片的接口电路和实现方法。
2 LAN91C111
LAN91C111是SMSC公司为嵌入式应用系统推出的第三代快速以太网控制器。LAN91C111的芯片上集成了遵循SMSC/CD协议的MAC(媒体层)和PHY(物理层),符合IEEE802.3/802.U-100Base-Tx/10Base-T规范,其系统结构如图1所示。该以太网控制器的主要功能如下:
·自适应地选传输速率,支持10Mb/s/100Mb/s;
·充分支持全双工交换式以太网;
·支持突发数据传输;
·8k字节的内部存储器用作接收发送的FIFO缓存;
·增强式能量管理功能;
·支持总线8位、16位、32位的CPU访问;
·提前发送和接收。
LAN91C111以太网控制器遵循IEEE颁布的802.3以太网传输协议。其8-32位数据总线接口单元通过控制总线、地址总线和数据总线与外部的CPU相连。外部数据可以8位、16位或32位的方式与LAN91C111进行交换。该电路还集成了EEPROM接口,自举时再通过EEOROM接口输入到芯片中,从而实现自动初始化。总线仲裁器(Arbiter)用来监视以太网总线的数据交流情况,一旦发生阻塞,仲裁器一方面通过总线接口单元与外部CPU联系,另一方面控制内存控制单元(MMU),实现总线数据协调。内存控制单元可控制8kB动态SRAM的存储情况,实现与DMA控制器之间的数据联络。DMA控制器与总线控制器一起控制DMA与以太网协议处理器(EPH)之间的数据交换。以太网协议处理器(EPH)之间的数据交换。以太网协议处理器出来的数量最终经过10Mb/s/100Mb/s的物理层(PHY)直接到达以太网总线。
3 硬件电路组成
出于性价比的考虑,选用DSP控制器作为主CPU。TMS320LF2407是TI公司发布的一款高性价比的,适用于工业控制领域的DSP。该系列具有强大的指令系统、较强的灵活性、高速的数学处理功能及全新的内部结构,可广泛用于通信、计算机、商业、工业、军事等领域。TMS320LF2407是240X系列控制器中功能最强的一款,采用低功耗CMOS技术,具有30MI/s的执行速率,片上还集成了丰富的外围部件(EVM、A/D模块、CAN、SCI、SPI及JTAG)。TMS320LF2407的工作频率较高(40MHz),存贮空间较大(高达32k字的FLASH程序存储器,可扩展外部64k字存储器,64k字I/O寻址空间),非常适合处理复杂的TCP/IP协议。
由于LAN91C111是专为嵌入式系统设计的,因此,其外围电路相对比较简单。它和没有DMA传输性能的16位DSP(TMS320LF2407)及TG110-S050N2型电磁耦合变压器构成的嵌入式以太网结构如图2所示。图中,地址总线A1-A15相连。A0没有被LAN91C111使用,悬空;数据总线D0-D15相连,用于16位数据传输。LAN91C111端D16-D32悬空;LAN91C111的片选信号AEN由DSP的外部I/O接口选通信号IS提供。二个元件的读电平RD、写电平WR分别相连。LAN91C111的中断输出信号INTRO送入DSP的外部中断脚XINT1触发中断。嵌入式以太网通信模块的电路原理如图3所示。
4 软件设计
4.1 μC/OS II实时操作系统的移植
μC/OS II是一种开放源码的实时嵌入式操作系统,是一个可移植、可裁减、可固化的占先式多任务操作系统,已被应用到多种微处理器中,其大部分源码是用ANSI C语言编写的。移植工作包括以下几个内容:
(1)用汇编语言改写OS_CPU_A.ASM文件
该文件包括4个子程序:_OSStartHighRdy、OSCtxSw、OSIntCtxSw和OSTickISR。OSStartHighRdy()函数被OSStart()函数调用,功能是运行优先级最高的就绪任务;OSCtxSw()函数被OS Sched()函数调用,其功能是在任务级实现任务切换,任务切换用31号软中断来实现;OSIntCtxSw()函数只能在中断子程序里被OSIntExit()函数调用,由于中断的产生可能引起任务切换,因此在中断服务程序的最后会调用OSIntExit()函数调用,由于中断的产生可能引起任务切换,因此在中断服务程序的最后会调用OSIntExit()函数来检查任务就绪状态,如果满足任务切换条件(在最后一层中断里,并有高优先级任务就绪),则OSIntExit()调用此函数实现任务切换;时钟节拍函数OSTickISR()的功能如下:TMS320LF2407有4个通用定时器,其中断优先级由高到低分别为T1、T3、T2、T4,可根据实际需要选择基中的一个来实现时钟节拍。需要注意的是:调用_OSIntEnter前不能开中断。如果在调用_OSIntEnter前就开中断,有可能在OSIntNesting加1前就被中断。若发生这种情况,则当高优先级的中断调用OSIntExit()而退出时,应直接从高优先级中断里切换到任务,而不是反回到_OSTickISR(假设_OSTickISR是最后一层中断),其根本原因就在于_OSTickISR还没有来得及将OSIntNesting加1就被中断了。在用户的其他中断服务程序中也应该防止此类错误。
(2)用C语言改写OS CPU_C.C文件
本文件仅包括一个OSTaskStkInit()子程序。该函数可模仿TI公司的1$$SAVE库函数对任务堆栈进行初始化,被OSTaskCreate()函数和OSTaskCreateExt()函数所调用,该函数是用来返回任务堆栈初始化后的指针值。注意:TMS320LF2407A本身的堆栈(以下简称US)只有8级,无法作为系统堆栈使用,所以C编译器将其内部的二个突破口AR0,AR1保留,其中AR1作为堆栈指针SP,AR0用做堆栈中临时变量指针FP(在汇编程序中不要使用这二个寄存器,如果必须使用,要关中断,并注意保存和恢复)。编译器将函数和中断压进US的返回地址弹出放在SP(AR1)指南的堆栈中,并保留环境,不同的是函数只保留程序要使用的寄存器,中断要调用I$$AVE保存所有寄存器,返回时要跳转到(而不是调用)I$$REST(这两个函数可以在RTS.SRC中看到源代码)恢复寄存器,这二个函数就象8068里的中断进入和指令HRET,是移植OSTaskStkInit()函数的基础。
(3)编写OS_CPU.H文件
内容可根据μC/OS-II中的“80×86”的内容进行修改,这里仅给出关键内容:
#define OS STK GROWTH 0
#define OS ENTER CRITICAL() asm("SETC IN TM");
#define OS_EXIT CRITICAL() asm ("CLRC IN TM");
#define OS-ASKee SW() asm("INTR 31");
(4)适当OSMap Tb1[]和OSUnMapTb1[]
移植时还需要对tic /OS-II的OSMapTb1[]和O-SunMapTb1[]二个表进行适当处理,否则会出现寻址错误而使μC/OS-II无法正常运行,这是移植能否成功的重要因素之一。由于TMS320LF2407的存储器采用的是哈佛结构,Flash存储器(或外扩的ROM)位于程序区,因此,处理的方法如下:将tic /OS-II中OSMapTb1[]和OSUnMapTb1[]的数据类型从“INT8U const'改为‘INT8U’,并在链接器命令文件(.CMD)中将“.cinit”块分配到Flash存储器(或外扩的ROM中,链接选项用“-C”(ROM初始化)。这样,在程序运行时将自动对数据区的RAM进行初始化,即运行时自动将“.cinit”块中的数据复制到数据区的RAM中。
按需配置OS-FG.H,修改CPU中断向量表和外设向量表后,其他文档的内容可根据实际需要进行相应设置。至此,μC/OS-II在TMS320LF2407上的移植就完成了。
4.2 LAN91C111的编程
4.2.1 初始化
上电后,LAN91C111内部寄存器的值均设置为缺省值,CPU将根据需要设置其中的Configuration,Base和Individual Address寄存器,以保证电路正确工作。
4.2.2 发送数据包流程
(1)DSP向控制器发送ALLOCATE MEMORY命令(设置MMUCOM寄存器,通常设置为0x0020),MMU为待发送的包在控制器内部的packet buffer中分配存储空间。
(2)DSP查询Interrupt Status寄存器中的ALLOC INT位,直到该位被置成1,也可以设置Interrupt Mask中的ALLOC INT位,然后等待硬件中断,这时,MMU已经分配好存储空间。而且TX packet number放在Allocation Result寄存器中。(3)将Allocation Result寄存器中的packet number:拷贝到Packet Number:寄存器中,设置Pointer寄存器(设置为TX;WR,AUTOINC,即0x4000)。然后将包中数据从upper layer发送队列传送到控制器的Data Register。要求依次写入Status Word、Byte Count、destination address、source address、packet size、packet data、control word。
(4)DSP向控制器发送“ENQUEUE PACKET NUMBER TO TX FIFO”命令(设置MMUCOM寄存器,通常设置0x00C0),该命令将Packet Number寄存器中的packet number拷贝到TX FIFO,说明发送的包已放入队列中。同时设置Transmit control寄存器中的TXENA位。同时设置Transmit control寄存器中的TXENA位,启动transmitter。到此为止,DSP的设置工作完成,它可以IDLE,直到接收到一个控制器产生的发送中断。
(5)当控制器传送完包以后,memory中的第一个字(16bit)被CSMA/CD写入相应的Status Word,然后将TX FIFO中的packet number移到TX completion FIFO,当TX completion FIFO不为空时产生中断。
(6)DSP接收到中断后,开始执行中断处理程序,它读入Interrupt Status寄存器,如果产生发送中断,则从FIFO ports寄存器读入发送的包中的packet number,并将它写入packet number寄存器。然后从memory中读人Status Word(包括设置Pointer寄存器为TX、RD、AUTOINC,即0x6000,然后从数据寄存器中读入包的Status Word),它是EPH寄存器的镜像,再根据Status Word判断包发送是否成功。如果成功,DSP则向控制器发送RELEASE命令(设置MMUCOM寄存器,设置为0x00A0),随后控制器将释放发送包所使用的存储空间,同时设置TX INT Acknowledge寄存器,它将TX completion FIFO中的pecket unmber清除。有二种产生发送中断的方案:每发送一个包产生一个中断;每发送一个序列的包产生一个中断。通过Control寄存器的Auto Release位来选择这二种方案,而且这二种方案所使用发送中断位也有所不同。
TX INT:当TX completion FIFO不为空时置1e;
TX EMPTY INT:当TX FIFO为空时置to;
AUTO RELEASE:如果置为1,发送包成功后,packet number不写到TX completion FIFO中,而且它所使用的存储空间被自动释放。
(7)使用“每发送一个包产生一个中断”方案时,AUTO RELEASE=0,该方案的流程如上文所述。使用“每发送一个序列的包产生一个中断”方案时允许TX EMPTY INT和TX INT,AUTORELEASE=1,当发送完FIFO中的最后一个包后,产生TX EMPTY INT中断。若出现严重的发送错误,则产生TX INT中断,同时将发送失败的包的packet number保存到FIFO Ports寄存器,这样DSP就可以知道发送过程停止了。这种方案可以减少DSP的负担,而且存储空间的释放也更迅速。当AUTO RELEASE=1时,DSP不能得到成功发送包的packet number。
4.2.3 接收数据包流程
(1)DSP设置receive control寄存器中的RXEN位,允许接收包。
(2)含有正确地址的包被接收到,从MMU请求存储空间,并分派一个packet number,内部的DMA逻辑产生连续的地址,并将接收到的字写到memory中,如果超界,包被丢弃,存储空间被释放。当检测到包的结束,Status Word被写到接收包的最前面,byte count写到第二个字。如果CRC校验正确,packet number被写到RX FIFO,由于RX FIFO非空时,因此将产生RCV INT中断;如果RCR校验不正确,则存储空间被释放,而且不产生中断。
(3)DSP接收到中断后开始执行中断处理程序,首先读入Interrupt Status寄存器,如果产生接收中断(RCV INT位为1),则可从FIFO ports寄存器得到接收包的packet number,而且可从data register将接收包传送到DSP的内存或外存中。当处理结束,DSP向处理器发送REMOVE AND RELEASE FROM TOP OF RX命令(即设置寄存器MMUCOM为0x0060)以释放使用的存储空间和packet number。
5 结束语
该系统能够正确地接入快速以太网,具备100/10Mbit/s、全双工/半双工自适应等多种功能,符合IEEE802.3/802.3μ-100Base-TX/1Obase-T规范,其嵌入式以太网接口支持RJ45和以太网的连接,可以通过以太网接入Internet,从而实现从Internet上监控嵌入式设备。
全部0条评论
快来发表一下你的评论吧 !