嵌入式技术
解决问题:malloc在申请内存的时候,内存碎片问题会导致原本内存大小足够,却申请大内存失败;
比如:原本内存还有10M内存,此时先申请4M内存,再申请16Bytes内存,之后把4M内存释放掉,按理来说,此时应该还有 10M - 16Bytes 内存,但此时,再去申请8M的大内存,则申请失败。
因为malloc申请的内存,必须是一块连续的内存,但此时中间已经有16Bytes内存碎片导致内存不连续,所以申请内存失败;
以下是我针对碎片问题,对内存管理机制做出一种优化方案:在开机初始化内存之后,先申请一块1M左右内存(根据情况修改大小),用作内存碎片管理,然后把这1M内存分为很多个小内存,并把小内存的地址放在链接节点中,之后申请内存时,优先判断内存碎片管理中是否有满足大小的小内存。
有的话,直接使用提前申请的小内存就可以了,如果内存管理机制中没有适合的内存,但重新用malloc()函数申请;
接下来,解释我写的碎片管理机制:
1 mm_management_init()初始化
void mm_management_init(unsigned int free_memory_start, unsigned int free_memory_end)
传入参数free_memory_start是内存初始化之后,剩余可申请的首地址,该地址,一般会传入到main函数,如果main()函数没有传入该参数的话,可以在内存初始化之后,自己malloc(4)申请一下,把返回的地址作为mm_management_init()函数的第一个参数;
传入参数free_memory_end是可以申请的最大地址,每个IC各有不同;
mm_management_init()对16bytes,64bytes,256bytes,512bytes,1024bytes,4096bytes这些小内存做优化,提前计算小内存占用的总大小。
然后直接申请这块大内存占住,再把这块大内存分配给各个小内存,并记录在链表中,比如:mm_fix_16_head
2 mm_management_malloc()申请函
unsigned int mm_management_malloc(unsigned int size)
3 mm_management_free()
void mm_management_free(void *mm_ptr)
接下来是代码:
#include这份代码我写得还是比较简单,注释些也写得清楚,明白它的原理,应该很容易就看懂。#include #define C_MM_16BYTE_NUM (32) #define C_MM_64BYTE_NUM (16) #define C_MM_256BYTE_NUM (12) #define C_MM_512BYTE_NUM (12) #define C_MM_1024BYTE_NUM (18) #define C_MM_4096BYTE_NUM (30) #define C_MM_16BYTE (16) #define C_MM_64BYTE (64) #define C_MM_256BYTE (256) #define C_MM_512BYTE (512) #define C_MM_1024BYTE (1024) #define C_MM_4096BYTE (4096) #define C_MM_MAX_SIZE C_MM_4096BYTE //碎片管理最大的碎片大小 #define MM_STATUS_FREE (0) //0:表示内存空闲 #define MM_STATUS_BUSY (1) //1:表示内存已被申请 #define MM_STATUS_OK (0) #define MM_STATUS_FAIL (1) typedef struct mm_node_struct { unsigned int *mm_node; //存放内存节点指针 unsigned short iflag; //指针是否空闲 struct P_MM_Node_STRUCT *next; //指向下一个内存节点指针 } MM_Node_STRUCT, *P_MM_Node_STRUCT; typedef struct mm_sdram_struct { unsigned int count; P_MM_Node_STRUCT *next; } MM_SDRAM_STRUCT, *P_MM_SDRAM_STRUCT; static MM_SDRAM_STRUCT mm_fix_16_head; static MM_SDRAM_STRUCT mm_fix_64_head; static MM_SDRAM_STRUCT mm_fix_256_head; static MM_SDRAM_STRUCT mm_fix_512_head; static MM_SDRAM_STRUCT mm_fix_1024_head; static MM_SDRAM_STRUCT mm_fix_4096_head; static P_MM_SDRAM_STRUCT pmm_fix_16_head = &mm_fix_16_head; static P_MM_SDRAM_STRUCT pmm_fix_64_head = &mm_fix_64_head; static P_MM_SDRAM_STRUCT pmm_fix_256_head = &mm_fix_256_head; static P_MM_SDRAM_STRUCT pmm_fix_512_head = &mm_fix_512_head; static P_MM_SDRAM_STRUCT pmm_fix_1024_head = &mm_fix_1024_head; static P_MM_SDRAM_STRUCT pmm_fix_4096_head = &mm_fix_4096_head; static P_MM_Node_STRUCT mm_management_getnode(P_MM_SDRAM_STRUCT pmm_fix_head); static unsigned int mm_management_node_free(P_MM_SDRAM_STRUCT pmm_fix_head, unsigned int *mm_ptr, unsigned int size); static unsigned int *mm_management_ptr = NULL; static unsigned int mm_management_size = 0; /* ** free_memory_start : 开机内存初始化之后,剩余可以申请的地址的首地址 ** free_memory_end : 内存可以申请的最大地址 */ void mm_management_init(unsigned int free_memory_start, unsigned int free_memory_end) { unsigned int mm_usesize=0,offset=0,mm_offset; unsigned char *ptr_tmp; unsigned int i; P_MM_Node_STRUCT pmm_fix_head, pmm_fix_tmp; free_memory_start = (free_memory_start + 3) & (~0x3); // Align to 4-bytes boundary free_memory_end = (free_memory_end + 3) & (~0x3); // Align to 4-bytes boundary do{ //[1]判断剩余内存是否满足碎片管理所需大小 mm_usesize = 0; mm_usesize += C_MM_16BYTE * C_MM_16BYTE_NUM; mm_usesize += C_MM_64BYTE * C_MM_64BYTE_NUM; mm_usesize += C_MM_256BYTE * C_MM_256BYTE_NUM; mm_usesize += C_MM_512BYTE * C_MM_512BYTE_NUM; mm_usesize += C_MM_1024BYTE * C_MM_1024BYTE_NUM; mm_usesize += C_MM_4096BYTE * C_MM_4096BYTE_NUM; if(mm_usesize+free_memory_start > free_memory_end) { printf("free memory not enough for mm management,init fail "); break; } mm_management_ptr = (unsigned char *)malloc(mm_usesize); //申请整块碎片管理内存大小 //如果有malloc_align函数,建议改用malloc_align申请64bit对其的内存 if(mm_management_ptr == NULL) { printf("mm management malloc fail,init fail "); break; } mm_management_size = mm_usesize; ptr_tmp = mm_management_ptr; memset(ptr_tmp, 0x00, mm_usesize); //[2]内存链表头初始化,用于存放以下步骤的子链表节点 memset((void*)pmm_fix_16_head, 0x00, sizeof(mm_fix_16_head)); memset((void*)pmm_fix_64_head, 0x00, sizeof(mm_fix_64_head)); memset((void*)pmm_fix_256_head, 0x00, sizeof(mm_fix_256_head)); memset((void*)pmm_fix_512_head, 0x00, sizeof(mm_fix_512_head)); memset((void*)pmm_fix_1024_head, 0x00, sizeof(mm_fix_1024_head)); memset((void*)pmm_fix_4096_head, 0x00, sizeof(mm_fix_4096_head)); //[3]申请16Bytes碎片内存存放在链表 mm_offset = 0; mm_fix_16_head.count = C_MM_16BYTE_NUM; pmm_fix_head = pmm_fix_16_head; for(i=0; i iflag = MM_STATUS_FREE; pmm_fix_tmp->next = NULL; offset = (C_MM_16BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址 pmm_fix_tmp->mm_node = ptr_tmp + offset; pmm_fix_head->next = pmm_fix_tmp; pmm_fix_head = pmm_fix_tmp; } //[4]申请64Bytes碎片内存存放在链表 mm_offset += C_MM_16BYTE * C_MM_16BYTE_NUM; mm_fix_64_head.count = C_MM_64BYTE_NUM; pmm_fix_head = pmm_fix_64_head; for(i=0; i iflag = MM_STATUS_FREE; pmm_fix_tmp->next = NULL; offset = (C_MM_64BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址 pmm_fix_tmp->mm_node = ptr_tmp + offset; pmm_fix_head->next = pmm_fix_tmp; pmm_fix_head = pmm_fix_tmp; } //[5]申请256Bytes碎片内存存放在链表 mm_offset += C_MM_64BYTE * C_MM_64BYTE_NUM; mm_fix_256_head.count = C_MM_256BYTE_NUM; pmm_fix_head = pmm_fix_256_head; for(i=0; i iflag = MM_STATUS_FREE; pmm_fix_tmp->next = NULL; offset = (C_MM_256BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址 pmm_fix_tmp->mm_node = ptr_tmp + offset; pmm_fix_head->next = pmm_fix_tmp; pmm_fix_head = pmm_fix_tmp; } //[6]申请512Bytes碎片内存存放在链表 mm_offset += C_MM_256BYTE * C_MM_256BYTE_NUM; mm_fix_512_head.count = C_MM_512BYTE_NUM; pmm_fix_head = pmm_fix_512_head; for(i=0; i iflag = MM_STATUS_FREE; pmm_fix_tmp->next = NULL; offset = (C_MM_512BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址 pmm_fix_tmp->mm_node = ptr_tmp + offset; pmm_fix_head->next = pmm_fix_tmp; pmm_fix_head = pmm_fix_tmp; } //[7]申请1024Bytes碎片内存存放在链表 mm_offset += C_MM_512BYTE * C_MM_512BYTE_NUM; mm_fix_1024_head.count = C_MM_1024BYTE_NUM; pmm_fix_head = pmm_fix_1024_head; for(i=0; i iflag = MM_STATUS_FREE; pmm_fix_tmp->next = NULL; offset = (C_MM_1024BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址 pmm_fix_tmp->mm_node = ptr_tmp + offset; pmm_fix_head->next = pmm_fix_tmp; pmm_fix_head = pmm_fix_tmp; } //[8]申请4096Bytes碎片内存存放在链表 mm_offset += C_MM_1024BYTE * C_MM_1024BYTE_NUM; mm_fix_4096_head.count = C_MM_4096BYTE_NUM; pmm_fix_head = pmm_fix_4096_head; for(i=0; i iflag = MM_STATUS_FREE; pmm_fix_tmp->next = NULL; offset = (C_MM_4096BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址 pmm_fix_tmp->mm_node = ptr_tmp + offset; pmm_fix_head->next = pmm_fix_tmp; pmm_fix_head = pmm_fix_tmp; } }while(0); printf("mm management init end!!! "); } unsigned int mm_management_malloc(unsigned int size) { int status = MM_STATUS_FAIL; //MM_STATUS_FAIL表示还没申请到碎片内存 P_MM_Node_STRUCT pmm_fix_node; unsigned int *mm_ptr = NULL; //获取空闲碎片节点 do{ //[1]判断申请内存大小是否满足要求 if(size < 0) { status = MM_STATUS_FAIL; printf("mm management malloc size is error "); return NULL; } //[2]判断大小是否小于16Byets if(size < C_MM_16BYTE && status == MM_STATUS_FAIL) { pmm_fix_node = mm_management_getnode(pmm_fix_16_head); if(pmm_fix_node != NULL) { status = MM_STATUS_OK; break; } } //[3]判断大小是否小于64Byets if(size < C_MM_64BYTE && status == MM_STATUS_FAIL) { pmm_fix_node = mm_management_getnode(pmm_fix_64_head); if(pmm_fix_node != NULL) { status = MM_STATUS_OK; break; } } //[4]判断大小是否小于256Byets if(size < C_MM_256BYTE && status == MM_STATUS_FAIL) { pmm_fix_node = mm_management_getnode(pmm_fix_256_head); if(pmm_fix_node != NULL) { status = MM_STATUS_OK; break; } } //[5]判断大小是否小于512Byets if(size < C_MM_512BYTE && status == MM_STATUS_FAIL) { pmm_fix_node = mm_management_getnode(pmm_fix_512_head); if(pmm_fix_node != NULL) { status = MM_STATUS_OK; break; } } //[6]判断大小是否小于1024Byets if(size < C_MM_1024BYTE && status == MM_STATUS_FAIL) { pmm_fix_node = mm_management_getnode(pmm_fix_1024_head); if(pmm_fix_node != NULL) { status = MM_STATUS_OK; break; } } //[7]判断大小是否小于4096Byets if(size < C_MM_4096BYTE && status == MM_STATUS_FAIL) { pmm_fix_node = mm_management_getnode(pmm_fix_4096_head); if(pmm_fix_node != NULL) { status = MM_STATUS_OK; break; } } }while(0); if(status == MM_STATUS_OK) { mm_ptr = pmm_fix_node->mm_node; pmm_fix_node->iflag = MM_STATUS_BUSY; } else { mm_ptr = (unsigned int *)malloc(size); } return (unsigned int *)mm_ptr; } void mm_management_free(void *mm_ptr) { unsigned int i; int status = MM_STATUS_FAIL; P_MM_Node_STRUCT pmm_fix_node; do{ //[1]如果地址是16Bytes碎片地址,则释放内存 status = mm_management_node_free(pmm_fix_16_head, mm_ptr, C_MM_16BYTE); if(status == MM_STATUS_OK) break; //[2]如果地址是64Bytes碎片地址,则释放内存 status = mm_management_node_free(pmm_fix_64_head, mm_ptr, C_MM_64BYTE); if(status == MM_STATUS_OK) break; //[1]如果地址是256Bytes碎片地址,则释放内存 status = mm_management_node_free(pmm_fix_256_head, mm_ptr, C_MM_256BYTE); if(status == MM_STATUS_OK) break; //[1]如果地址是512Bytes碎片地址,则释放内存 status = mm_management_node_free(pmm_fix_512_head, mm_ptr, C_MM_512BYTE); if(status == MM_STATUS_OK) break; //[1]如果地址是1024Bytes碎片地址,则释放内存 status = mm_management_node_free(pmm_fix_1024_head, mm_ptr, C_MM_1024BYTE); if(status == MM_STATUS_OK) break; //[1]如果地址是4096Bytes碎片地址,则释放内存 status = mm_management_node_free(pmm_fix_4096_head, mm_ptr, C_MM_4096BYTE); if(status == MM_STATUS_OK) break; }while(0); if(status == MM_STATUS_OK) { //do nothing,在mm_management_node_free函数中已经将pmm_fix_node->iflag设为MM_STATUS_FREE } else { free(mm_ptr); } } //获取MM_SDRAM_STRUCT里的空闲节点 static P_MM_Node_STRUCT mm_management_getnode(P_MM_SDRAM_STRUCT pmm_fix_head) { P_MM_SDRAM_STRUCT pmm_fix_head_tmp = pmm_fix_head; P_MM_Node_STRUCT pmm_fix_node = pmm_fix_head_tmp->next; unsigned int count = pmm_fix_head_tmp->count; unsigned int i; for(i=0; i iflag == MM_STATUS_FREE) break; pmm_fix_node = pmm_fix_node->next; } if(i < count) return pmm_fix_node; else return NULL; } //比较MM_SDRAM_STRUCT的所有节点,如果地址一致,则释放地址 static unsigned int mm_management_node_free(P_MM_SDRAM_STRUCT pmm_fix_head, unsigned int *mm_ptr, unsigned int size) { P_MM_SDRAM_STRUCT pmm_fix_head_tmp = pmm_fix_head; P_MM_Node_STRUCT pmm_fix_node = pmm_fix_head_tmp->next; unsigned int count = pmm_fix_head_tmp->count; unsigned int i; for(i=0; i mm_node == mm_ptr) { if(pmm_fix_node->iflag == MM_STATUS_FREE) { printf("mm management have been free "); } else { pmm_fix_node->iflag = MM_STATUS_FREE; memset((void *)mm_ptr, 0x00, size); //释放内存后,把碎片内存清0 } return MM_STATUS_OK; } pmm_fix_node = pmm_fix_node->next; } return MM_STATUS_FAIL; }
说一下这个机制的优缺点:
优点:
小内存申请的时候,先去提前申请好的内存中获取,这样可以很好地解决内存碎片问题。
缺点以及优化:
1.碎片管理机制可申请的碎片数量是有限的,当数量被申请完之后,还是得重新用malloc申请;但是这可以通过我定义的 C_MM_16BYTE_NUM 和 C_MM_16BYTE 这些宏定义修改碎片数量,根据项目需要修改数量,也是能很好的优化此问题;
2.比如我要申请4个Bytes,但此时,16,64,256,512,1024这几个链表已经用完了,那此时它会用4096这个链表去给4Bytes使用,当然,这同样可以修改C_MM_16BYTE_NUM 和 C_MM_16BYTE 这些宏定义优化这个问题。
审核编辑:汤梓红
全部0条评论
快来发表一下你的评论吧 !