别再用offset和limit分页了,OFFSET和LIMIT有什么问题?

电子说

1.3w人已加入

描述

不需要担心数据库性能优化问题的日子已经一去不复返了。

随着时代的进步,随着野心勃勃的企业想要变成下一个 Facebook,随着为机器学习预测收集尽可能多数据的想法的出现,作为开发人员,我们要不断地打磨我们的 API,让它们提供可靠和有效的端点,从而毫不费力地浏览海量数据。

如果你做过后台开发或数据库架构,你可能是这么分页的:

存储器

如果你真的是这么分页,那么我不得不抱歉地说,你这样做是错的。

你不以为然?没关系。Slack、Shopify 和 Mixmax 这些公司都在用我们今天将要讨论的方式进行分页。

我想你很难找出一个不使用 OFFSET 和 LIMIT 进行数据库分页的人。对于简单的小型应用程序和数据量不是很大的场景,这种方式还是能够“应付”的。

如果你想从头开始构建一个可靠且高效的系统,在一开始就要把它做好。

今天我们将探讨已经被广泛使用的分页方式存在的问题,以及如何实现高性能分页。

1、OFFSET 和 LIMIT 有什么问题?

正如前面段落所说的那样,OFFSET 和 LIMIT 对于数据量少的项目来说是没有问题的。

但是,当数据库里的数据量超过服务器内存能够存储的能力,并且需要对所有数据进行分页,问题就会出现。

为了实现分页,每次收到分页请求时,数据库都需要进行低效的全表扫描。

什么是全表扫描?全表扫描 (又称顺序扫描) 就是在数据库中进行逐行扫描,顺序读取表中的每一行记录,然后检查各个列是否符合查询条件。这种扫描是已知最慢的,因为需要进行大量的磁盘 I/O,而且从磁盘到内存的传输开销也很大。

这意味着,如果你有 1 亿个用户,OFFSET 是 5 千万,那么它需要获取所有这些记录 (包括那么多根本不需要的数据),将它们放入内存,然后获取 LIMIT 指定的 20 条结果。

也就是说,为了获取一页的数据:

 

10万行中的第5万行到第5万零20行

 

需要先获取 5 万行。这么做是多么低效?

左边的 Schema SQL 将插入 10 万行数据,右边有一个性能很差的查询和一个较好的解决方案。只需单击顶部的 Run,就可以比较它们的执行时间。第一个查询的运行时间至少是第二个查询的 30 倍。

数据越多,情况就越糟。看看我对 10 万行数据进行的 PoC。

现在你应该知道这背后都发生了什么:OFFSET 越高,查询时间就越长。

2、替代方案

你应该这样做:

存储器

这是一种基于指针的分页。

你要在本地保存上一次接收到的主键 (通常是一个 ID) 和 LIMIT,而不是 OFFSET 和 LIMIT,那么每一次的查询可能都与此类似。

为什么?因为通过显式告知数据库最新行,数据库就确切地知道从哪里开始搜索(基于有效的索引),而不需要考虑目标范围之外的记录。

比较这个查询:

存储器

和优化的版本:

存储器

返回同样的结果,第一个查询使用了 12.80 秒,而第二个仅用了 0.01 秒。

要使用这种基于游标的分页,需要有一个惟一的序列字段 (或多个),比如惟一的整数 ID 或时间戳,但在某些特定情况下可能无法满足这个条件。

我的建议是,不管怎样都要考虑每种解决方案的优缺点,以及需要执行哪种查询。

如果我们的表没有主键,比如是具有多对多关系的表,那么就使用传统的 OFFSET/LIMIT 方式,只是这样做存在潜在的慢查询问题。我建议在需要分页的表中使用自动递增的主键,即使只是为了分页。






审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分