影响机器视觉检测设备精度有哪些?要如何提高机器视觉检测精度?

描述

 

      机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、 I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。在一些不适于人工作业的危险工作环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。同时,在大批量重复性工业生产过程中,用机器视觉检测方法可以大大提高生产的效率和自动化程度。

       一个典型的工业机器视觉系统包括:光源、镜头(定焦镜头、变倍镜头、远心镜头、显微镜头)、 相机(包括CCD相机和COMS相机)、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。

1、影响机器视觉检测设备精度的因素

 视觉检测设备不稳定因素:工业相机
      工业相机的挑选关键考虑到其传感器类型、像素和帧数,在其中控制器分CCD与CMOS二种,CMOS光学镜头处理速度高,各元器件、电源电路中间间距很近,影响情况严重,显像噪音高。CCD控制器照相机相对性于CMOS照相机具备敏感度高、噪音低和响应时间快的特性,在稳定性层面,CCD照相机的耐冲击与振动性也较强,一般来说,CCD控制器照相机在显像品质上和稳定性层面要好于CMOS照相机。
      视觉检测设备不稳定因素:光源
      光源具备变大图象的特点与缺点、消弱错乱及背景图的功效,立即影响键入数据信息的品质,因为沒有通用性的照明灯具,光源的设计方案一直是机器视觉技术的难题,一般须对于每一特殊的运用案例来挑选光源种类,也要依据实际自然环境对光源安的裝、光源的直射方法开展掂量,以超过最好实际效果。不一样种类的光源稳定性存有差别,普遍的光源有环形光、条形光、面光源、背光源、同轴光、碗光等。因此,光源的选择差异,也是影响视觉检测设备的不稳定因素。
       视觉检测设备不稳定因素:机器视觉软件
       机器视觉软件稳定性对机器视觉技术的影响不容置疑,视觉识别系统终究会在电子计算机上利用计算机选用有目的性的优化算法开展图像滤波,边缘检测和边沿获取等一系列图象处理,不一样的图象处理和解析方式及其不一样的检验方式与计算方法,都是产生不一样的偏差,优化算法好坏决策精确测量精度的高低,因此,需要选择合适的机器视觉软件,这样才可以避免视觉检测设备精度变低。
      矩视智能机器视觉低代码平台是一个面向机器视觉应用的云端协同开发平台,始终秉承0成本、0代码、0门槛、0硬件的产品理念。平台以人工智能技术为核心,在机器视觉应用开发环节,为开发者提供图像采集、图像标注、算法开发、算法封装和应用集成的一站式完整工具链。覆盖字符识别、缺陷检测、目标定位、尺寸测量、3D测量、视频开发等上百项通用功能。
      零成本:无需购买,平台免费开发,用户无限制使用
      零门槛:无需任何图像知识,只需标注操作即可完成视觉算法开发
      零代码:无需编写代码,只需“拖拉拽”式操作,开发可本地化部署的应用程序
      零硬件:无需搭建本地开发环境,浏览器登陆即可在线使用 

2、提高视觉检测精度的7种方法

选择合适的光源
      如果没有合适的光源,即使是最好的相机也无法捕捉到清晰的图像。对于某些应用,背光可能会产生最佳效果。在其他情况下,您可能需要明场照明或低角度线性阵列。您的系统集成商可以帮助您做出正确的选择。
      校准光源
      一旦您知道哪种类型的光源最好,可能仍需要进一步校准。调整照明系统的频率和波长,以减少来自生产环境或您正在使用的零件和材料上可能存在的涂层的噪音。
      过滤灯光
      机器视觉在保持一致的环境中效果最佳。但这可能很难保证一整天。环境光、重新布置的生产线和不断变化的产品都会影响照明。镜头过滤器可以帮助消除不需要的光。
      触发功能
      在某些情况下,生产环境中的电噪声会导致检测系统误触发。这可能会导致分析失败并导致产品不应该出现故障。触发功能可以帮助您避免这种情况。
      添加AI技术
      人工智能和嵌入式系统正变得越来越容易被各种制造商使用,人工智能可以通过基于强大的数据集做出更智能的决策来减少面积。
       改善零件定位
       一些合格的元件由于定位不良而未能通过检查。添加更精确的工具来固定零件进行检查可以提高机器视觉检查的准确性。
       增加稳定性
       生产环境中的设备经常会受到噪音和振动的影响,从而导致图像模糊,这可能导致不必要的故障和重复检查。

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分