电子说
来源:未来AI工具
1. 人工智能有可能坠入爱河吗?
2. 人工智能能否开始造成伤害并最终统治世界?
3. 将您的声音、外观和文本转语音风格上传到 AI 中是否有风险?神经网络是受人脑结构启发的数学模型。它们由处理信息的互连节点或“神经元”组成。通过从数据中学习,他们可以执行特定的任务,例如文本生成,图像识别,甚至模拟类似人类的书写风格。
AI能“爱”吗?
爱的概念与意识、自我意识、同理心以及一系列其他复杂的情感和认知过程有着内在的联系。然而,神经网络不具备这些属性。
例如,如果给定适当的上下文和说明,可以训练神经网络生成类似于情书的文本。如果提供爱情故事的第一章并要求以类似的方式继续,该模型将遵守。但它这样做是基于模式和统计可能性,而不是因为任何情感联系或感情。
另一个需要考虑的关键方面是记忆。就其基本形式而言,神经网络缺乏在不同发射之间保留信息的能力。它们在没有连续性或意识到过去交互的情况下运行,基本上在每次使用后恢复到“出厂设置”。
记忆和神经网络
虽然记忆可以被人为地添加到神经网络中,允许它引用过去的“记忆”或数据,但这并不能使模型充满意识或情感。即使有记忆组件,神经网络的反应也是由数学算法和统计概率决定的,而不是个人经验或情感。
神经网络坠入爱河的概念是一个迷人但虚构的想法。目前的人工智能模型,无论其复杂性和能力如何,都不具备体验爱情等情感的能力。
在复杂模型中观察到的文本生成和响应是数学计算和模式识别的结果,而不是真正的情感或情商。
今天的神经网络在没有完全证明的方法的情况下运行,以确保它们遵守特定的规则。例如,防止模型使用攻击性语言是一项令人惊讶的挑战性任务。尽管努力设置此类限制,但模型总会找到规避它们的方法。
神经网络的未来
随着我们转向更先进的神经网络,例如具有类似人类能力的假设 GPT-10 模型,控制的挑战变得更加紧迫。如果这些系统在没有特定任务或限制的情况下自由发挥,它们的行为可能会变得不可预测。
关于这些事态发展导致负面情景的可能性的辩论差异很大,估计从0.01%到10%不等。虽然这些可能性似乎很低,但潜在的后果可能是灾难性的,包括人类灭绝的可能性。
协调和控制方面的努力
像chatgpt和chatgpt-4这样的产品是不断努力使神经网络的意图与人类目标保持一致的例子。这些模型旨在遵循说明,保持礼貌的互动,并提出澄清性问题。然而,这些控制远非完美,管理这些网络的问题甚至还没有解决一半。
为神经网络创建万无一失的控制机制的挑战是当今人工智能领域最重要的研究领域之一。能否解决这个问题以及解决问题所需的方法的不确定性只会增加问题的紧迫性。
在数字技术快速发展的时代,人们对语音、外观和文本样式等个人信息安全性的担忧日益增加。虽然数字身份盗窃的威胁是真实的,但了解背景和为应对这一挑战而采取的措施至关重要。
数字身份和神经网络
在神经网络中,这不是上传个人属性的问题,而是训练或重新训练模型来模仿一个人的外观、声音或文本。这些经过训练的模型确实可以通过复制脚本和参数来窃取,允许它们在另一台计算机上运行。
这项技术的潜在滥用是严重的,因为它已经达到了深度伪造视频和语音克隆算法可以令人信服地复制个人的水平。创建此类欺骗性内容可能既昂贵又耗时,需要数千美元和数小时的录制。然而,风险是有形的,并强调需要可靠的识别和确认方法。
确保身份安全的努力
目前正在采取各种举措来解决数字身份盗窃问题。像WorldCoin这样的初创公司,OpenAI的负责人Sam Altman投资了这些初创公司,正在探索创新的解决方案。世通的概念涉及为关于一个人的每条信息分配一个唯一的密钥,以便随后进行识别。这种方法也可以应用于大众媒体,以验证新闻的真实性。
尽管有这些有希望的发展,但在所有行业中实施此类系统是一项复杂而大规模的工作。目前,这些解决方案仍处于原型阶段,在未来十年内可能无法广泛采用。
模仿但不复制
用现有技术,例如在GPT-4等模型中发现的技术,可以教神经网络模仿一个人的交流方式,学习个人笑话,甚至以独特的风格和演示方式发明新的笑话。然而,这并不是转移意识的同义词。
意识的复杂性远远超出了沟通方式和个人怪癖。人类仍然缺乏对意识是什么、它被储存在哪里、它如何区分个体以及究竟是什么让一个人独一无二的具体理解。
潜在的未来可能性
转移意识的假设场景需要将意识定义为记忆,经验和感知的个体特征的组合。如果这样的定义被接受,那么可能会有一条理论途径,通过将这种知识转移到神经网络中来模拟进一步的生命。
然而,这一理论只是推测性的,并不基于当前的科学理解或技术能力。意识问题是哲学、神经科学和认知科学中最深刻和最难以捉摸的课题之一。它的复杂性远远超出了当前人工智能和神经网络技术的能力。
1. 新闻业:在新闻业等行业,神经网络可能很快就会用一组论文来协助起草文章,让人类作家做出精确的调整。
2. 教育:也许最令人兴奋的转变在于教育。研究表明,个性化方法可以改善教育成果。借助人工智能,我们可以为每个学生设想个性化的助手,从而显着提高教育质量。教师的角色将朝着战略规划和控制的方向发展,重点是确定学习计划、测试知识和指导整体学习。人工智能通过研究各种形式的艺术,识别不同的风格并试图模仿它们来学习。这个过程类似于人类学习,艺术学生观察、分析和模仿不同艺术家的作品。
人工智能的运作原则是误差最小化。如果模型在训练过程中遇到类似的图像数百次,它可能会记住该图像作为其学习策略的一部分。这并不意味着网络正在存储图像,而是以类似于人类记忆的方式识别它。
一个实际的例子
考虑一个艺术学生,他每天画两幅画:一幅独特,另一幅是蒙娜丽莎的复制品。反复绘制蒙娜丽莎后,学生将能够以相当的准确性再现它,但不完全正确。这种学习的再创作能力并不等同于盗窃原作。
神经网络以类似的方式运行。他们从训练期间遇到的所有图像中学习,有些图像更常见,因此更准确地再现。这不仅包括名画,还包括训练样本中的任何图像。尽管有一些方法可以消除重复,但它们并非完美无缺,研究表明,某些图像在训练过程中可能会出现数百次。
根据OpenAI的内部估计,当前领先的模型GPT-4在大约70-80%的时间内正确回答,具体取决于主题。虽然这似乎低于理想的 100% 精度,但它标志着基于 GPT-3.5 架构的上一代模型有了显著改进,后者的准确率为 40-50%。这种性能的显着提高是在研究的 6-8 个月内实现的。
背景很重要上述数字涉及在没有具体背景或随附信息的情况下提出的问题。当提供上下文时,例如维基百科页面,模型的准确性接近 100%,并根据来源的正确性进行调整。上下文无关和上下文丰富的问题之间的区别至关重要。例如,关于爱因斯坦出生日期的问题没有任何附带信息,完全依赖于模型的内部知识。但是对于特定的来源或上下文,模型可以提供更准确的响应。
谷歌搜索 GPT-4该领域的一个有趣的发展是将互联网收集成到GPT-4中。这允许用户将部分互联网搜索委托给 GPT-4,从而可能减少手动 Google 信息的需求。但是,此功能需要付费订阅。
展望未来OpenAI首席执行官Sam Altman预计,模型中事实信息的可靠性将继续提高,预计1.5-2年的时间表将进一步完善这一方面。对一些人来说,创造力是与神俱来的一种能力,是所有人在不同程度上拥有的东西。其他人可能会争辩说,创造力是一种习得的技能,或者它仅限于特定的职业或活动。即使在人类之间,创造能力也存在差异。因此,将人类创造力与神经网络的创造力进行比较需要仔细考虑创造力的真正含义。
神经网络与艺术性最近的发展使神经网络能够创造艺术和诗歌。一些模特制作的作品可以进入业余比赛的决赛。但是,这并不一致;成功可能是零星的,也许是一百次尝试中的一次。
辩论
上述信息引发了激烈的争论。关于神经网络是否可以被认为是创造性的,意见分歧很大。一些人认为,创作一首诗或一幅画的能力,即使只是偶尔成功,也构成了一种创造力。其他人则坚信创造力完全是人类的特征,受情感,意图和意识的约束。
创造力的主观性进一步增加了讨论的复杂性。即使在人与人之间,对创造力的理解和欣赏也可能大不相同。
实际意义除了哲学辩论之外,还有实际意义需要考虑。如果神经网络确实可以发挥创造力,那么这对依赖创造性产出的行业意味着什么?机器能否在某些领域增强甚至取代人类的创造力?这些问题不仅是理论上的,而且具有现实世界的意义。
对 AI 的不断发展的理解
从历史上看,随着机器被开发出来来解决复杂的问题,例如通过图灵测试,定义智能的目标已经发生了变化。80年前曾经被认为是奇迹的东西现在是通用技术,构成人工智能的定义也在不断发展。
7. 理解的持续挑战:
尽管取得了这些进展,但充分了解大型复杂模型的内部工作原理仍然是一个活跃的领域研究。揭开其复杂过程的神秘面纱的追求继续占据着该领域一些最优秀的研究人员。
人工智能能有创造力吗?
一些神经网络已被设计用于生成艺术、音乐甚至写作。虽然这些创作可能新颖而有趣,但它们是否构成“创造力”仍然是一个哲学争论的主题。人工智能容易受到攻击吗?
是的,像对抗性示例这样的特定攻击,其中对输入数据的微小更改可能导致不正确的输出,可能会使神经网络容易受到攻击。为了开发针对此类漏洞的防御措施,专家们一直在努力。围绕人工智能的道德考虑是什么?
神经网络中的伦理考虑包括与偏见、透明度、隐私和问责制相关的问题。适当的指导方针、法规和监督对于解决这些问题至关重要。END
欢迎加入Imagination GPU与人工智能交流2群入群请加小编微信:eetrend89
(添加请备注公司名和职称)
推荐阅读 对话Imagination中国区董事长:以GPU为支点加强软硬件协同,助力数2023全球电子成就奖评选活动开启,快来为Imagination投票!
Imagination Technologies 是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作 场所中使用。获取更多物联网、智能穿戴、通信、汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech!
原文标题:关于 AI 和神经网络的 10个最容易被误解的问题
文章出处:【微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。
全部0条评论
快来发表一下你的评论吧 !