普林斯顿博士:手写30个主流机器学习算法,全都开源了!

描述

Hello,我是kk~

NumPy 作为 Python 生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为 Python 提供高效率的多维数组计算,并提供了一系列高等数学函数,我们可以快速搭建模型的整个计算流程。毫不负责任地说,NumPy 就是现代深度学习框架的「爸爸」。

尽管目前使用  写模型已经不是主流,但这种方式依然不失为是理解底层架构和深度学习原理的好方法。最近,来自普林斯顿的一位博士后将 NumPy 实现的所有机器学习模型全部开源,并提供了相应的论文和一些实现的测试效果。

  • 项目地址:https://github.com/ddbourgin/numpy-ml

 

根据机器之心的粗略估计,该项目大约有 30 个主要机器学习模型,此外还有 15 个用于预处理和计算的小工具,全部.py 文件数量有 62 个之多。平均每个模型的代码行数在 500 行以上,在神经网络模型的 layer.py 文件中,代码行数接近 4000。

这,应该是目前用 NumPy 手写机器学习模型的「最高境界」吧。

谁用 NumPy 手推了一大波 ML 模型

通过项目的代码目录,我们能发现,作者基本上把主流模型都实现了一遍,这个工作量简直惊为天人。我们发现作者 David Bourgin 也是一位大神,他于 2018 年获得加州大学伯克利分校计算认知科学博士学位,随后在普林斯顿大学从事博士后研究。

尽管毕业不久,David 在顶级期刊与计算机会议上都发表了一些优秀论文。在最近结束的 ICML 2019 中,其关于认知模型先验的研究就被接收为少有的 Oral 论文。


 

David Bourgin 小哥哥就是用 NumPy 手写 ML 模型、手推反向传播的大神。这么多的工作量,当然还是需要很多参考资源的,David 会理解这些资源或实现,并以一种更易读的方式写出来。

正如 reddit 读者所质疑的:在 autograd repo 中已经有很多这样的例子,为什么你还要做这个项目?

作者表示,他的确从 autograd repo 学到了很多,但二者的不同之处在于,他显式地进行了所有梯度计算,以突出概念/数学的清晰性。当然,这么做的缺点也很明显,在每次需要微分一个新函数时,你都要写出它的公式……

估计 David Bourgin 小哥哥在写完这个项目后,机器学习基础已经极其牢固了。最后,David 表示下一步会添加文档和示例,以方便大家使用。

 

项目总体介绍

这个项目最大的特点是作者把机器学习模型都用 NumPy 手写了一遍,包括更显式的梯度计算和反向传播过程。可以说它就是一个机器学习框架了,只不过代码可读性会强很多。

David Bourgin 表示他一直在慢慢写或收集不同模型与模块的纯 NumPy 实现,它们跑起来可能没那么快,但是模型的具体过程一定足够直观。每当我们想了解模型 API 背后的实现,却又不想看复杂的框架代码,那么它可以作为快速的参考。

文章后面会具体介绍整个项目都有什么模型,这里先简要介绍它的整体结构。如下所示为项目文件,不同的文件夹即不同种类的代码集。

开源

在每一个代码集下,作者都会提供不同实现的参考资料,例如模型的效果示例图、参考论文和参考链接等。如下所示,David 在实现神经网络层级的过程中,还提供了参考论文。

开源

当然如此庞大的代码总会存在一些 Bug,作者也非常希望我们能一起完善这些实现。如果我们以前用纯 NumPy 实现过某些好玩的模型,那也可以直接提交 PR 请求。因为实现基本上都只依赖于 NumPy,那么环境配置就简单很多了,大家差不多都能跑得动。

 

手写 NumPy 全家福

 

作者在 GitHub 中提供了模型/模块的实现列表,列表结构基本就是代码文件的结构了。整体上,模型主要分为两部分,即传统机器学习模型与主流的深度学习模型。

其中浅层模型既有隐马尔可夫模型和提升方法这样的复杂模型,也包含了线性回归或最近邻等经典方法。而深度模型则主要从各种模块、层级、、最优化器等角度搭建代码架构,从而能快速构建各种神经网络。

除了模型外,整个项目还有一些辅助模块,包括一堆预处理相关的组件和有用的小工具。

该 repo 的模型或代码结构如下所示:

1. 高斯混合模型

  • EM 训练

 

2. 隐马尔可夫模型

  • 维特比解码

  • 似然计算

  • 通过 Baum-Welch/forward-backward 算法进行 MLE 参数估计

 

3. 隐狄利克雷分配模型(主题模型)

  • 用变分 EM 进行 MLE 参数估计的标准模型

  • 用 MCMC 进行 MAP 参数估计的平滑模型

 

4. 神经网络

4.1 层/层级运算

  • Add

  • Flatten

  • Multiply

  • Softmax

  • 全连接/Dense

  • 稀疏进化连接

  • LSTM

  • Elman 风格的 RNN

  • 最大+平均池化

  • 点积注意力

  • 受限玻尔兹曼机 (w. CD-n training)

  • 2D 转置卷积 (w. padding 和 stride)

  • 2D 卷积 (w. padding、dilation 和 stride)

  • 1D 卷积 (w. padding、dilation、stride 和 causality)

 

4.2 模块

  • 双向 LSTM

  • ResNet 风格的残差块(恒等变换和卷积)

  • WaveNet 风格的残差块(带有扩张因果卷积)

  • Transformer 风格的多头缩放点积注意力

 

4.3 正则化项

  • Dropout

  • 归一化

  • 批归一化(时间上和空间上)

  • 层归一化(时间上和空间上)

 

4.4 优化器

  • SGD w/ 动量

  • AdaGrad

  • RMSProp

     

4.5 学习率调度器

  • 常数

  • 指数

  • Noam/Transformer

  • Dlib 调度器

 

4.6 权重初始化器

  • Glorot/Xavier uniform 和 normal

  • He/Kaiming uniform 和 normal

  • 标准和截断正态分布初始化

 

4.7 损失

  • 交叉熵

  • 平方差

  • Bernoulli VAE 损失

  • 带有梯度惩罚的 Wasserstein 损失

 

4.8 激活函数

  • ReLU

  • Tanh

  • Affine

  • Sigmoid

  • Leaky ReLU

 

4.9 模型

  • Bernoulli 变分自编码器

  • 带有梯度惩罚的 Wasserstein GAN

 

4.10 神经网络工具

  • col2im (MATLAB 端口)

  • im2col (MATLAB 端口)

  • conv1D

  • conv2D

  • deconv2D

  • minibatch

 

5. 基于树的模型

  • 决策树 (CART)

  • [Bagging] 随机森林

  • [Boosting] 梯度提升决策树

 

6. 线性模型

  • 岭回归

  • Logistic 回归

  • 最小二乘法

  • 贝叶斯线性回归 w/共轭先验

 

7.n 元序列模型

  • 最大似然得分

  • Additive/Lidstone 平滑

  • 简单 Good-Turing 平滑

 

8. 强化学习模型

  • 使用交叉熵方法的智能体

  • 首次访问 on-policy 蒙特卡罗智能体

  • 加权增量重要采样蒙特卡罗智能体

  • Expected SARSA 智能体

  • TD-0 Q-learning 智能体

  • Dyna-Q / Dyna-Q+ 优先扫描

 

9. 非参数模型

  • Nadaraya-Watson 核回归

  • k 最近邻分类与回归

 

10. 预处理

  • 离散傅立叶变换 (1D 信号)

  • 双线性插值 (2D 信号)

  • 最近邻插值 (1D 和 2D 信号)

  • 自相关 (1D 信号)

  • 信号窗口

  • 文本分词

  • 特征哈希

  • 特征标准化

  • One-hot 编码/解码

  • Huffman 编码/解码

  • 词频逆文档频率编码

 

11. 工具

  • 相似度核

  • 距离度量

  • 优先级队列

  • Ball tree 数据结构

 

项目示例

由于代码量庞大,机器之心在这里整理了一些示例。

例如,实现点积注意力机制:

开源

class DotProductAttention(LayerBase):
    def __init__(self, scale=True, dropout_p=0, init="glorot_uniform", optimizer=None):
        super().__init__(optimizer)
        self.init = init
        self.scale = scale
        self.dropout_p = dropout_p
        self.optimizer = self.optimizer
        self._init_params()

    def _fwd(self, Q, K, V):
        scale = 1 / np.sqrt(Q.shape[-1]) if self.scale else 1
        scores = Q @ K.swapaxes(-2, -1) * scale  # attention scores
        weights = self.softmax.forward(scores)  # attention weights
        Y = weights @ V
        return Y, weights

    def _bwd(self, dy, q, k, v, weights):
        d_k = k.shape[-1]
        scale = 1 / np.sqrt(d_k) if self.scale else 1

        dV = weights.swapaxes(-2, -1) @ dy
        dWeights = dy @ v.swapaxes(-2, -1)
        dScores = self.softmax.backward(dWeights)
        dQ = dScores @ k * scale
        dK = dScores.swapaxes(-2, -1) @ q * scale
        return dQ, dK, dV

 

在以上代码中,Q、K、V 三个向量输入到「_fwd」函数中,用于计算每个向量的注意力分数,并通过 softmax 的方式得到权重。而「_bwd」函数则计算 V、注意力权重、注意力分数、Q 和 K 的梯度,用于更新网络权重。

在一些实现中,作者也进行了测试,并给出了测试结果。如图为隐狄利克雷(Latent Dirichlet allocation,LDA)实现进行文本聚类的结果。左图为词语在特定主题中的分布热力图。右图则为文档在特定主题中的分布热力图。

开源

图注:隐狄利克雷分布实现的效

 


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分