什么是光刻工艺?光刻的基本原理

制造/封装

505人已加入

描述

光刻是半导体芯片生产流程中最复杂、最关键的工艺步骤,耗时长、成本高。半导体芯片生产的难点和关键点在于将电路图从掩模上转移至硅片上,这一过程通过光刻来实现, 光刻的工艺水平直接决定芯片的制程水平和性能水平......

每个半导体产品的制造都需要数百个工艺,我们将整个制造过程分为八个步骤:晶圆加工-氧化-光刻-刻蚀-薄膜沉积-外延生长-扩散-离子注入。

为帮助大家了解和认识半导体及相关工艺,我们将每期推送微信文章,为大家逐一介绍上述每个步骤。

在上一篇文章中提到,为了保护晶片免受各种杂质的影响,制作了氧化膜的--氧化工艺。今天我们就来讨论一下在形成氧化膜的晶片上照出半导体设计电路的“光刻工艺”。

01  光刻工艺

1.什么是光刻工艺

光刻就是把芯片制作所需要的线路与功能区做出来。

利用***发出的光通过具有图形的光罩对涂有光刻胶的薄片曝光,光刻胶见光后会发生性质变化,从而使光罩上得图形复印到薄片上,从而使薄片具有电子线路图的作用。这就是光刻的作用,类似照相机照相。照相机拍摄的照片是印在底片上,而光刻刻的不是照片,而是电路图和其他电子元件。

光刻工艺

光刻技术是一种精密的微细加工技术。

常规光刻技术是采用波长为 2000~4500 埃的紫外光作为图像信息载体,以光致抗光刻技术蚀剂为中间(图像记录)媒介实现图形的变换、转移和处理,最终把图像信息传递到晶片(主要指硅片)或介质层上的一种工艺。

可以说,光刻技术是现代半导体、微电子、信息产业的基础,光刻技术直接决定了这些技术的发展水平。

自1959年集成电路成功发明至今的60多年中,其图形线宽缩小了约四个数量级,电路集成性提高了六个数量级以上。这些技术的飞速进步主要归功于光刻技术的发展。

光刻工艺

(集成电路制造的各个发展阶段对于光刻技术的要求)

2.光刻的基本原理

光刻材料一般特指光刻胶,又称为光刻抗蚀剂,是光刻技术中的最关键的功能材料。这类材料具有光(包括可见光、紫外光、电子束等)反应特性,经过光化学反应后,其溶解性发生显著变化。

其中,正性光刻胶在显影液中的溶解度增加,得到的图案与掩膜版相同;负性光刻胶则相反,即经显影液后溶解度降低甚至不溶,得到的图案与掩膜版相反。两种光刻胶的应用领域是不同的,正性光刻胶使用更为普遍,占到总量的80%以上。

光刻工艺

以上是光刻工艺的流程示意图

(1)涂胶:即在硅片上形成厚度均匀、附着性强、没有缺陷的光刻胶薄膜。为了增强光刻胶薄膜与硅片之间的附着力,往往需要先用六甲基二硅氮烷(HMDS)、三甲基硅烷基二乙胺(TMSDEA)等物质对硅片进行表面改性。随后以旋涂的方式制备光刻胶薄膜。

(2)前烘:经过旋涂后的光刻胶薄膜依旧残留有一定含量的溶剂。经过较高温度的烘烤,可以将溶剂尽可能低挥发除去,前烘之后,光刻胶的含量降低到5%左右。

(3)曝光:即对光刻胶进行光照,此时光反应发生,光照部分与非光照部分因此产生溶解性的差异。

(4)显影&坚膜:即将产品浸没于显影液之中,此时正性胶的曝光区和负性胶的非曝光区则会在显影中溶解。以此呈现出三维的图形。经过显影后的晶片,需要一个高温处理过程,成为坚膜,主要作用为进一步增强光刻胶对衬底的附着力。

(5)刻蚀:受到刻蚀的是光刻胶下方的材料。包括液态的湿法刻蚀和气态的干法刻蚀。比如对于硅的湿法刻蚀,使用的为氢氟酸的酸性水溶液;对于铜的湿法刻蚀,使用的为硝酸、硫酸等强酸溶液,而干法刻蚀往往使用等离子体或者高能离子束,使材料表面产生损伤而得到刻蚀。

(6)去胶:最后需要将光刻胶从镜片表面除去,这一步骤称为去胶。

安全性是所有半导体生产中最重要的问题,芯片光刻工艺过程中危险有害光刻气体主要有以下几种:

1.过氧化氢

过氧化氢(H2O2)是很强的氧化剂,直接接触会引起皮肤和眼睛发炎及灼伤。

2.二甲苯

二甲苯是负光刻餃使用的一科溶刊与显影剂.易燃且点只有27.3℃〔大约是室温),而且在空气中的浓度为1%-7%时就具有爆炸性。重复接触二甲苯会引起皮肤发炎。二甲苯蒸气是甜的,与飞机黏着削的气味一样;暴露在二甲苯中时会引起眼睛.鼻子和喉咙发炎.吸入该气体会引起头疼、晕眩、失去食欲及疲劳。

3.六甲基二硅氮烷(HMDS)

六甲基二硅氮烷(HMDS) 最常用来增加光刻胶在品圆表面附着力的底漆层,易燃且燃点为6.7℃,当在空气中的浓度为0.8%-16%时具有爆炸性,HMDS会强烈地与水、酒精和矿物质酸反应释放出氨水。

4.氢氧化四甲基氨

氢氧化四甲基氨(TMAH〕广泛用于作为正光刻的显影剂,有毒也具有腐冲性,吞下或与皮肤直接接触则可能致命;与TMAH的从尘或雾气接触会引起眼睛、皮肤、鼻子和喉咙发炎.吸入高浓度的TMAH将导致死亡。

5.氯与氟

氯(Cl2)与氟(F2)都用在准分子激光器中作为深紫外线和极紫外线(EUV)光源,两种气体都具有毒性,皆旱现浅绿色,具有强烈的剌激性气昧,吸入高浓度的这种气体将导致死亡。氟气可能会与水反应,产生氟化氢气体。氟化氢气体是一种强酸,对皮肤、眼睛和呼吸道有刺激作用,可能会导致烧伤、呼吸困难等症状。高浓度的氟化物会对人体造成中毒,引起头痛、呕吐、腹泻、昏迷等症状。

6.氩气

氩气(Ar)是一种惰性气体,通常不会对人体造成直接的危害。在正常情况下,人们呼吸的空气中含有约0.93%的氩气,而这个浓度对人体没有明显的影响。然而,在某些情况下,氩气可能会对人体造成危害。

以下是一些可能的情况:在密闭的空间中,氩气的浓度可能会升高,从而降低空气中的氧气浓度,导致缺氧。这可能会引起头晕、乏力、呼吸急促等症状。此外,氩气是一种惰性气体,但在高温或高压下,它可能会爆炸。

7.氖气

氖气(Ne)是一种稳定的、无色无味的气体,不会参与人体的呼吸过程,因此在高浓度的氖气环境中呼吸,会导致缺氧。如果长时间处于缺氧状态,可能会引起头痛、恶心、呕吐等症状。此外,氖气在高温或高压下,可能会与其他物质反应,产生火灾或爆炸。

8.氙气

氙气(Xe)是一种稳定的、无色无味的气体,不会参与人体的呼吸过程,因此在高浓度的氙气环境中呼吸,会导致缺氧。如果长时间处于缺氧状态,可能会引起头痛、恶心、呕吐等症状。此外,氙气在高温或高压下,可能会与其他物质反应,产生火灾或爆炸。

9.氪气

氪气(Kr)是一种稳定的、无色无味的气体,不会参与人体的呼吸过程,因此在高浓度的氪气环境中呼吸,会导致缺氧。如果长时间处于缺氧状态,可能会引起头痛、恶心、呕吐等症状。此外,氪气在高温或高压下,可能会与其他物质反应,产生火灾或爆炸。

02半导体行业危险气体检测方案

半导体行业在生产、制造、工艺等方面会涉及产生易燃易爆、有毒有害性的气体。作为半导体制造工厂气体的使用者,每一位工作人员都应该在使用前对各种危险气体的安全数据加以了解,并且应该知道如何应对这些气体外泄时的紧急处理程序。

在半导体行业生产、制造及储存等过程中,为了避免这些危险气体的泄露导致的生命财产损失,需要安装气体检测仪器,来对目标气体进行检测。

气体检测仪在现今半导体工业已成为必备的环境监控仪器,也是最为直接的监测工具。

理研计器一直关注半导体制造行业的安全发展,以为人们营造安全的工作环境为使命,潜心开发适用于半导体行业的气体传感器,针对用户遇到的各种问题,提供合理的解决方案,不断升级产品功能,优化系统。

来源:半导体工艺与设备

审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分