傅里叶变换和系统的频域分析(2)

描述

傅里叶变换和系统的频域分析

傅里叶级数

由信号的分解可知,周期信号f(t)在区间(t0,t0+T)可以展开成在完备正交信号空间的无穷级数。如果完备的正交函数集是三角函数集或指数函数集,那么,周期信号所展开的无穷级数就分别称为"三角型傅里叶级数"或"指数型傅里叶级数",统称傅里叶级数。

需要指出,只有当周期信号满足狄利克雷条件时,才能展开成傅里叶级数。

狄利克雷条件:1、函数在任意区间内连续,或只有有限个第一类间断点(可去间断点和跳跃间断点)。2、在一个周期内,函数有有限个极大值或极小值。(条件的意义是使函数的傅里叶级数不仅收敛,并且收敛于f(x)。)

周期信号的分解

设有周期实信号f(t),它的周期是T,角频率Ω=2πF=2π/T,

它可分解为

三角函数

式中的系数an,bn称为傅里叶系数,它们的求法如下

三角函数

三角函数

三角函数

式中T为函数的周期,Ω=2π/T为角频率,由上式可见,an和bn都是n(或nΩ)的函数,其中an是n(或nΩ)的偶函数,bn是(或nΩ)的奇函数,a0/2为直流分量。

通过辅助角公式将三角式合并即可得谐波式

三角函数

式中

三角函数

可见任意满足狄利克雷条件周期信号是由各次谐波分量组成的。

奇、偶函数的傅里叶级数

SIMPLE LIFE

注:1、奇函数乘以奇函数为偶函数;奇函数乘以偶函数为奇函数;偶函数乘以奇函数为奇函数。

2、奇函数在一个周期的积分为零;偶函数在一个周期内的积分等于其半个周期积分的两倍。

(1)f(t)为偶函数

若函数f(t)是时间t的偶函数,那么an和bn的求法便可进行化简。

三角函数

(2)f(t)为奇函数

若函数f(t)是时间t的奇函数,那么an和bn的求法便可进行化简。

三角函数

实际上,任意函数都可以分解为奇函数和偶函数两部分,即

三角函数

(3)f(t)为奇谐函数

如果函数f(t)的前半周期波形移动T/2后,与后半周期波形相对于横轴对称,则这种函数称为半波对称函数或奇谐函数。

其傅里叶级数展开式中将只含奇次谐波分量而不含偶次谐波分量,即

三角函数

傅里叶级数的指数形式

周期信号分解时,如果使用的完备正交函数集是复指数集,那么周期信号所展开的无穷级数就称为指数型傅里叶级数,即

三角函数

Fn是指数型傅里叶级数的系数,它的求法为

三角函数

其中Fn为复数,可表示为

三角函数

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分