BEV感知中的Transformer算法介绍

描述

1、Camera only

主要思想:固定900个query个数,随机初始化query。每个query对应一个3D reference point,然后反投影到图片上sample对应像素的特征。

缺点:需要预训练模型,且因为是随机初始化,训练收敛较慢

Transformer

BEV Former

https://arxiv.org/abs/2203.17270

主要思想:将BEV下的每个grid作为query,在高度上采样N个点,投影到图像中sample到对应像素的特征,且利用了空间和时间的信息。并且最终得到的是BEV featrue,在此featrue上做Det和Seg。

Spatial Cross-Attention:将BEV下的每个grid作为query,在高度上采样N个点,投影到图像中获取特征。

Temporal Self-Attention: 通过self-attention代替运动补偿,align上一帧的feature到当前帧的Q

Transformer

旷视,PETR

https://arxiv.org/pdf/2203.05625.pdf

Transformer

2、多模态

清华,FUTR3D

https://arxiv.org/pdf/2203.10642.pdf

在DETR的基础上,将3D reference point投影到Lidar voxel特征和radar point 特征上。

Transformer

香港科技大学,Transfusion

https://arxiv.org/pdf/2203.11496.pdf

利用CenterPoint在heatmap上获取Top K个点作为Query(这K个点可以看做是通过lidar网络初始化了每个目标的位置,这比DETR用随机点作为Qurey收敛要快),先经过Lidar Transformer得到proposal,把这个proposal作为Query,再和image feature做cross attention。

Transformer

Google,DeepFusion

https://arxiv.org/abs/2203.08195

直接将Lidar feature和Camera feature做cross attention,这个思路牛逼,我不看到这篇论文是绝对想不到还能这么搞的。

Transformer

编辑:黄飞

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分