实现通用人工智能(Artificial General Intelligence,AGI)是一个长远目标。我们需要探索通往人工智能(AI)的道路,要以基础研究作为出发点。“基础研究是整个科学体系的源头,是所有技术问题的总机关。”这也说明了AI基础理论研究的意义和重要性。要加强AI的数学物理基础研究,可以将“第一性原理”(first principle)作为出发点,发展新一代AI基础理论。
目前对“智能”还没有明确定义,因此对AI还没有一个精确的、人们普遍可以接受的定义。在学界有两个定义可参考:一是斯坦福大学人工智能研究中心尼尔斯·约翰·尼尔逊(Nils J. Nilsson)教授提出的“AI是关于知识的学科——怎样表示知识、怎样获得知识并使用知识的科学。” 二是麻省理工学院的帕特里克·温斯顿(Patrick Winston)教授提出的 “AI就是研究如何使计算机去做过去只有人类能做的智能工作”。
有人认为AI没有第一性原理,依据是尼尔逊教授撰写的《人工智能原理》(Principles of Artificial Intelligence)一书[1]。在该书的第2页,有一段话给我们明确呈现出这样的概念:“AI目前没有通用理论,因此接下来向您展示一些应用程序。”也就是说,目前AI不存在第一性原理,现在应把注意力放在与工程目标相关的原理上,这些原理是衍生出来的原理。衍生的原理实际上告诉我们复杂系统的一些简单结果,无论是自然还是AI,其本质可能也是如此。智能是许多过程并行发生和相互作用的结果,而这些过程无法轻易地追溯到一个基本的物理原理。
在21世纪的今天,人们的认知水平与科学技术发生了很大的变化。在以实验为基础的学科上,均有基于第一性原理的成果。例如在生物科学方面,第一性原理也被重新发掘出来。最近,美国圣塔菲研究所(Santa Fe Institute)现任所长戴维·克拉考尔(David Krakauer)在《理论生物科学》(Theory Bioscience)期刊发表了一篇题为“个体信息理论”的文章,基于第一性原理的数学形式化理论,通过捕捉从过去到未来的信息流,能够严格定义许多不同形式的个体。但也有人提出了质疑:“作者试图给出‘从头计算’生命的一般框架,野心是很大的。但其给出一个调节参数γ,就不能不让人怀疑其‘科学立场’了。”
由于物理是基础科学,许多学科是以物理为基础的,物理的第一性原理就可以应用到这些学科。物理的第一性原理也被称为“从头计算”(ab initio),即只使用最基本的物理学定律,不使用经验参数,仅用电子质量、光速、质子、中子质量等少数实验数据去做量子计算。我们研究基于物理的AI,AI的第一性原理可以借用物理的第一性原理,将“从头计算”应用到AI,可以视为AI的第一性原理。但是“从头计算”是狭义的第一性原理,广义的第一性原理是“最小作用量原理”(the least action principle)。
为什么是基于物理的人工智能?
数学、物理不但是其他学科的基础,更是AI的基础。为什么要基于物理学研究AI基础理论?这是因为物理学是研究物质运动最一般规律和物质基本结构的学科,是自然科学的带头学科,其他各自然科学学科的研究基础都建立在物理学科之上,而且哲学与物理的关系也非常紧密。著名物理学家斯蒂芬·霍金(Stephen Hawking)在他的论著《大设计》(The Grand Design)第一页上就语出惊人地宣称“哲学已死”,因为“哲学跟不上科学,特别是物理学现代发展的步伐。在我们探索知识的旅程中,科学家已成为火炬手。” 虽然这是一个被人批评为极为傲慢的“宣言”,但也从中说明物理学促进了哲学的发展。