8月AI实战:工业视觉缺陷检测 --基于tflite的yolov8模型优化和推理

电子说

1.3w人已加入

描述

8月AI实战:工业视觉缺陷检测

--基于tflite的yolov8模型优化和推理

操作视频见B站连接:aidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理bilibiliaidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理

1 模型优化

将onnx模型转化为tflite模型

打开网站:http://aimo.aidlux.com/

输入试用账号和密码:账号:AIMOTC001 ,密码:AIMOTC001

通过页面中的提示AI Model Optimizer,依次执行步骤①上传模型②选择目标平台③参数设置④转换结果。

通过上述①-④可将onnx模型转为tflite模型

模型转换过程包含如下日志信息

2023-09-07 19:47:05,969 - INFO : Optimization started.

2023-09-07 19:47:05,970 - INFO : [ONNX-SIM] Clean ONNX Model input node.

2023-09-07 19:47:06,733 - INFO : [ONNX2TFLITE] Start converting to TFLITE.

2023-09-07 19:47:28,511 - INFO : Model optimization done.

2 推理的py文件

模型采用课程中提供的yolov8_slimneck_SIOU.ONNX,转化完模型路径及名称,如下

# 模型

model_path = "/home/lesson3/yolov8_slimneck_SIOU_tflite/yolov8_slimneck_SIOU_fp32.tflite"

# 测试图片路径

image_path = "/home/lesson3/test"

模型推理过程包含如下步骤:

初始化aidlite类并创建aidlite对象

aidlite = aidlite_gpu.aidlite()

print("ok")

加载模型

value = aidlite.ANNModel(model_path, [640 * 640 * 3 * 4], [8400 * 11 * 4], 4, 0)

print("gpu:", value)

包含遍历每一张图片

for root, dirs, files in os.walk(image_path):

    num = 0

    for file in files:

        file = os.path.join(root, file)

         frame = cv2.imread(file)

         x_scale = frame.shape[1] / 640

         y_scale = frame.shape[0] / 640

将图片转换为模型输入的640*640尺寸

img = cv2.resize(frame, (640, 640))

# img_copy=img.co

img = img / 255.0

img = np.expand_dims(img, axis=0)

img = img.astype(dtype=np.float32)

print(img.shape)

传入模型输入数据

aidlite.setInput_Float32(img)

执行推理

start = time.time()

aidlite.invoke()

end = time.time()

timerValue = 1000 * (end - start)

print("infer time(ms):{0}", timerValue)

获取输出

pred = aidlite.getOutput_Float32(0)

# print(pred.shape)

pred = np.array(pred)

print(pred.shape)

pred = np.reshape(pred, (8400, 11))

print(pred.shape)  # shape=(8400,11)

后处理,解析输出

boxes, scores, classes = postProcess(pred, confThresh, NmsThresh)

绘制保存图像

ret_img = draw(frame, x_scale, y_scale, boxes, scores, classes)

ret_img = ret_img[:, :, ::-1]

num += 1

image_file_name = "/home/result/res" + str(num) + ".jpg"

8. 保存图片

cv2.imwrite(image_file_name, ret_img)

审核编辑 黄宇

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分