CW32W031单片机的应用笔记

控制/MCU

1814人已加入

描述

一、功能介绍 

CW32W031 的射频部分支持 CAD 中断。从 Deepsleep 进入 STB3,开启 CAD 功能并进入 RX 模式后, CW32W031 会检测信道中是否会有 ChirpIOT 信号 , 如果存在将 CAD-IRQ 置高,MCU 内核可以通过一定的时间来检测 CAD-IRQ 信号是否拉高来判断信道中是否存在 ChirpIOT 信号。

用户可通过 GPIO11 端口检测 CAD-IRQ 信号,信号检测流程如下:

 图:信道活跃检测(CAD)

mcu

注:CW32W031 的 RF 部分有多种中断源,MCU 超时设置是在等待中断的产生,然后判断中断是否为 CAD 中断,从而执行不同的命令。

二、软件设计参考 

2.1 软件设计流程 

1. 芯片初始化; 

2. 配置 CAD 初始化; 

3. 芯片进入接收模式; 

4. 观察 CAD-IRQ 信号。 

2.2 软件设计验证 

2.2.1 验证步骤 

1. 发送模组周期性发送数据包; 

2. 接收模组配置为接收模式; 

3. 使用逻辑分析仪抓取接收端 CAD-IRQ 信号。

2.2.2 SDK 示例

参考代码

ret = rf_init();

if(ret != OK)

{

        dis_err(" RF Init Fail");

        while(1);

}

rf_set_default_para();

rf_set_cad();

rf_enter_continous_rx();

while (1)// 等待逻辑分析仪检测 CAD-IRQ 信号

{

         rf_irq_process();

}‍

示例代码配置了 CAD 初始化,配置 GPIO11 作为 CAD 检测 IO 口,随后进入接收模式。

发送模组周期性发送数据包(数据包 preamble+payload 的持续时间约 20.5ms),用逻辑分析仪抓取接收

模组 GPIO11 波形,观察检测结果。

2.2.3 验证结果

逻辑分析仪抓取结果如下图所示:

图:逻辑分析仪抓取结果(CAD)

mcu

根据结果显示,当发送模组发送数据包时,接收模组发生了 CAD-IRQ,CAD 检测引脚 GPIO11 被拉高约 20.5ms,维持一个完整 ChirpIOT 数据包的时间长度。

三、注意事项

3.1 关于 CAD 影响芯片的接收灵敏度

CAD 功能初始化时,修改了芯片的接收阈值,设置不同的接收阈值,会影响芯片的接收灵敏度,并可能存在CAD 误触发的情况。

uint32_t PAN3028_cad_en(void)

{

        PAN3028_set_gpio_output(MODULE_GPIO_CAD_IRQ);

        If(PAN3028_write_spec_page_reg(PAGE1_SEL,0x0f,0x10)!=OK)

        {

                 return FAIL;

        }

        return OK;

}

接收阈值的设置,需修改 PAN3028_cad_en() 函数中的寄存器配置,默认值为 0x10,修改接收阈值对接收灵

敏度及误触发概率的影响如下(实验数据在屏蔽放环境下测试):

mcu

用户在使用 CAD 功能时,需根据应用场景选择修改 PAN3028_cad_en() 函数中的寄存器值(PAGE1_SEL,0x0f, 默认值为 0x10),在使用完 CAD 功能后,建议调用 rf_set_cad_off() 函数,rf_set_cad_off() 函数可以关闭 CAD 功能并将接收阈值恢复。

3.2 关于 SDK 及演示系统板

SDK 中提供了 CAD 功能所需的函数接口,CAD-IRQ 被触发时,检测引脚 GPIO11 会被拉高。演示系统板将GPIO11 连接到了 PB07, 具体信息可前往官网查看 CW32W031 的开发板原理图。

3.3 关于 CAD 使用方法

CW32W031 的射频部分可以对 preamble 和 payload 进行 CAD 检测。

3.3.1 对 preamble 检查方式

当完整的 preamble+payload 信号到来时,用户可以在接收端通过 GPIO 口读取到 CAD-IRQ 信号,CAD 检测引脚 GPIO11被拉高,拉高时间为 preamble+payload的持续时间。此时,接收端可以产生正确的 rxdone结果。

图:逻辑分析仪抓取结果(完整 CAD)

mcu

当不完整的 preamble+payload 信号到来时(发射端先进行数据发送,随后接收端在 preamble 时间段内打开了 CAD 检测),此时,用户可以在接收端通过 GPIO 口读取到 CAD-IRQ 信号,CAD 检测引脚 GPIO11 的变化有两种情况:

1.preamble(部分)内含有较完整信息,GPIO11 会被拉高 preamble(部分)+payload 的持续时间。此时,接收端可以产生正确的 rxdone 结果。

图:逻辑分析仪抓取结果(较完整 preamble)

mcu

2.preamble(部分)内未含有完整信息,GPIO11 会呈现不规则高 - 低 - 高 - 低变换的现象。此时,接收端不会产生正确的接收结果。

图:逻辑分析仪抓取结果(不完整 preamble)

mcu

3.3.2 对 payload 检查方式

当只有 payload 信号到来时(发射端先进行数据发射,随后接收端在 payload 时间段内打开了 CAD 检测),此时,由于 RX-CAD 检测不到 preamble,CAD-IRQ 会呈现不规则高 - 低 - 高 - 低变换的现象。此时,接收端不会产生正确的接收结果。

图:逻辑分析仪抓取结果(只含 payload)

mcu

3.3.3 软件应用参考

当设置的 CAD 误触发概率较少,或存在少量误触发率但不影响软件应用时,可以通过检测 CAD-IRQ,GPIO11 上升沿来判断 CAD 触发,可以认为只要收到上升沿就是收到了 payload 信号(建议使用这种方法的接收阈值设为 0x15~0x20)。

当设置的 CAD 误触发概率较高时,需要结合 CAD 检测时间用软件方法来判断 payload 信号,CAD 检测的时间以单个 chirp 持续时间作为单位计算。单个 chirp 持续时间为 2SF/BW(SF 为扩频因子,BW 为带宽,BW单位为 Hz,时间单位为秒)。使用时,建议将检测时间窗口设置为 3 个 chirp 持续时间为佳。用户可以分别在 3 个 chirp 对应的位置检测 CAD 信号,如果同时检测到 CAD 信号(GPIO11 高电平),则可以认为有信号存在。同时,软件设计需要参考 3.3.1 对 preamble 检查方式和 3.3.2 对 payload 检查方式,进行灵活调整。

在打开 CAD 接收后,如果当前空中存在信号,那么芯片需要至少 2 个 chirp 持续时间的检测,GPIO11 才能首次对外输出高电平。一个典型的应用方法为:

1.计算 one_chirp_time = 2SF/BW;

2.配置需要检测的信道,rf_set_cad(),enter_rx;

3.检测 check_cad_inactive(),判断是否检测到 CAD 信号(下面的例程检测了三次,适用于误触发较多的情况)。

uint32_t check_cad_inactive(void)

{

       delay10us(one_chirp_time*2/10);

       if(GPIO_ReadPin(CW_GPIOB, GPIO_PIN_7) != 1)

       {

             return LEVEL_INACTIVE;// 没有 cad

       }

      delay10us(one_chirp_time/10);

      if(GPIO_ReadPin(CW_GPIOB, GPIO_PIN_7) != 1)

      {

            return LEVEL_INACTIVE;

      }

      delay10us(one_chirp_time/10);

      if(GPIO_ReadPin(CW_GPIOB, GPIO_PIN_7) != 1)

      {

            return LEVEL_INACTIVE;

      }

            return LEVEL_ACTIVE;// 有 cad

}

如果误触发较少,或存在少量误触发但不影响软件应用时,可以将检测次数减少为一次(例程如下),或者通过 GPIO11 上升沿作为判断依据。

uint32_t check_cad_inactive(void)

{

        delay10us(one_chirp_time*2/10);

        If(GPIO_ReadPin(CW_GPIOB, GPIO_PIN_7) != 1)

        { 

              return LEVEL_INACTIVE;// 没有 cad

        }

       return LEVEL_ACTIVE;// 有 cad

}

有关芯片购买事宜,请咨询武汉芯源半导体的销售和官方代理商。更多MCU详细信息,请访问武汉芯源半导体官方网站。

 

关于武汉芯源半导体

武汉芯源半导体有限公司,于2018年8月28日成立,是上市公司武汉力源信息技术股份有限公司全资子公司,专注芯片的设计、研发、销售及技术服务。武汉芯源半导体CW品牌源于Creative Wisdom首字母CW,传递“创芯源于智慧”的品牌理念。

武汉芯源半导体为电子行业用户提供微处理器MCU、小容量存储芯片EEPROM、功率器件SJ-MOSFET等系列产品,具有产品质量保证、技术性能可靠、供货能力稳定三大竞争优势。

在MCU领域目前已推出通用高性能CW32F003/030系列、安全低功耗CW32L083/031/052系列、无线射频CW32W031系列产品,广泛应用于消费电子、智能家居、物联网、工业控制、医疗电子以及汽车电子行业,未来将能够满足更多的市场需求。

武汉芯源半导体持续进行技术革新,确保稳定可靠的供应链能力,致力于成为***产业的领航者!

  审核编辑:汤梓红
 
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分