SCConv:即插即用的空间和通道重建卷积

描述

 

 介绍

本文作者提出了一种名为 SCConv(Spatial and Channel reconstruction Convolution, 空间和通道重建卷积)的卷积模块,目的是减少卷积神经网络中特征之间的空间和通道冗余,从而压缩CNN模型并提高其性能。

作者设计的 SCConv 模块,包含两个单元。一个名为 SRU (Spatial Reconstruction Unit, 空间重构单元) ,一个名为 CRU (Channel Reconstruction Unit, 通道重构单元) 。其中 SRU 通过 分离-重构方法 来减少空间冗余,CRU 则使用 分割-转换-融合方法 来减少通道冗余。这两个单元协同工作,以减少CNN中特征的冗余信息。

作者指出,SCConv 是一种可以直接替代标准卷积操作的插件式卷积模块 ,可以应用于各种卷积神经网络中,从而降低冗余特征并减少计算复杂性。

在后续的实验中,文章作者认为相对于其他流行的 SOTA 方法,他们提出的 SCConv 可以以更低的计算成本获得更高的准确率。下图是 ResNet50 在 ImageNet 上的 Top1 准确性测试结果。

cnn模块设计

SCConv

如下图,SCConv 由两个单元组成,即空间重构单元 (SRU) 和信道重构单元 (CRU) ,两个单元按顺序排列。输入的特征 X 先经过 空间重构单元 ,得到空间细化的特征Xw 。再经过 通道重构单元 ,得到通道提炼的特征 Y 作为输出。

SCConv 模块利用了特征之间的空间冗余和信道冗余,模块可以无缝集成到任何 CNN 框架中,减少特征之间的冗余,提高 CNN 特征的代表性。

cnn

 

作者对 SRU 和 CRU 进行不同的组合,包括:

  1. 不使用 SRU 和 CRU

  2. 单独使用 SRU

  3. 单独使用 CRU

  4. 并行使用 SRU 和 CRU

  5. 先使用 CRU 再使用 SRU

  6. 先使用 SRU 在使用 CRU

最终发现先使用 SRU 再使用 CRU 的效果最好。

cnn

 

下面详细介绍 SRU 和 CRU 这两个单元。

SRU 空间重建单元

 

cnn

在作者的设计中,该单元采用 分离-重构 的方法。

 

分离 操作的目的是将信息量大的特征图从信息量小的特征图中分离出来,与空间内容相对应。作者使用组归一化 (Group Normalization) 里的缩放因子来评估不同特征图中的信息含量。

cnncnncnn

 

cnn

cnn

 

cnn

经过 SRU 处理后,信息量大的特征从信息量小的特征中分离出来,减少了空间维度上的冗余特征。

CRU 通道重建单元

 

cnn

在作者的设计中,该单元采用 分割-转换-融合 的方法。

 

cnn

实验

消融实验

下图的消融实验确定了 SRU 和 CRU 的排列方式

cnn

 

下图的消融实验确定了 CRU 中的拆分系数 α

cnn

图片分类实验

下图是与其他 SOTA 方法的比较,作者认为在所有的情况下,SCConv-embedded 模型的准确性都优于先前所有的网络。在某些模型中,对比同类模型在减少参数和 FLOPs 的同时还实现了更高的准确率

cnn在CVer微信公众号后台回复:SCConv,可以下载本论文pdf和代码

相关代码中文注释

import torch  # 导入 PyTorch 库
import torch.nn.functional as F  # 导入 PyTorch 的函数库
import torch.nn as nn  # 导入 PyTorch 的神经网络模块

# 自定义 GroupBatchnorm2d 类,实现分组批量归一化
class GroupBatchnorm2d(nn.Module):
    def __init__(self, c_num:int, group_num:int = 16, eps:float = 1e-10):
        super(GroupBatchnorm2d,self).__init__()  # 调用父类构造函数
        assert c_num >= group_num  # 断言 c_num 大于等于 group_num
        self.group_num  = group_num  # 设置分组数量
        self.gamma      = nn.Parameter(torch.randn(c_num, 1, 1))  # 创建可训练参数 gamma
        self.beta       = nn.Parameter(torch.zeros(c_num, 1, 1))  # 创建可训练参数 beta
        self.eps        = eps  # 设置小的常数 eps 用于稳定计算

    def forward(self, x):
        N, C, H, W  = x.size()  # 获取输入张量的尺寸
        x           = x.view(N, self.group_num, -1)  # 将输入张量重新排列为指定的形状
        mean        = x.mean(dim=2, keepdim=True)  # 计算每个组的均值
        std         = x.std(dim=2, keepdim=True)  # 计算每个组的标准差
        x           = (x - mean) / (std + self.eps)  # 应用批量归一化
        x           = x.view(N, C, H, W)  # 恢复原始形状
        return x * self.gamma + self.beta  # 返回归一化后的张量

# 自定义 SRU(Spatial and Reconstruct Unit)类
class SRU(nn.Module):
    def __init__(self,
                 oup_channels:int,  # 输出通道数
                 group_num:int = 16,  # 分组数,默认为16
                 gate_treshold:float = 0.5,  # 门控阈值,默认为0.5
                 torch_gn:bool = False  # 是否使用PyTorch内置的GroupNorm,默认为False
                 ):
        super().__init__()  # 调用父类构造函数

         # 初始化 GroupNorm 层或自定义 GroupBatchnorm2d 层
        self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(c_num=oup_channels, group_num=group_num)
        self.gate_treshold  = gate_treshold  # 设置门控阈值
        self.sigomid        = nn.Sigmoid()  # 创建 sigmoid 激活函数

    def forward(self, x):
        gn_x        = self.gn(x)  # 应用分组批量归一化
        w_gamma     = self.gn.gamma / sum(self.gn.gamma)  # 计算 gamma 权重
        reweights   = self.sigomid(gn_x * w_gamma)  # 计算重要性权重

        # 门控机制
        info_mask    = reweights >= self.gate_treshold  # 计算信息门控掩码
        noninfo_mask = reweights < self.gate_treshold  # 计算非信息门控掩码
        x_1          = info_mask * x  # 使用信息门控掩码
        x_2          = noninfo_mask * x  # 使用非信息门控掩码
        x            = self.reconstruct(x_1, x_2)  # 重构特征
        return x

    def reconstruct(self, x_1, x_2):
        x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)  # 拆分特征为两部分
        x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)  # 拆分特征为两部分
        return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)  # 重构特征并连接

# 自定义 CRU(Channel Reduction Unit)类
class CRU(nn.Module):
    def __init__(self, op_channel:int, alpha:float = 1/2, squeeze_radio:int = 2, group_size:int = 2, group_kernel_size:int = 3):
        super().__init__()  # 调用父类构造函数

        self.up_channel     = up_channel = int(alpha * op_channel)  # 计算上层通道数
        self.low_channel    = low_channel = op_channel - up_channel  # 计算下层通道数
        self.squeeze1       = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层
        self.squeeze2       = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层

        # 上层特征转换
        self.GWC            = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1, padding=group_kernel_size // 2, groups=group_size)  # 创建卷积层
        self.PWC1           = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)  # 创建卷积层

        # 下层特征转换
        self.PWC2           = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1, bias=False)  # 创建卷积层
        self.advavg         = nn.AdaptiveAvgPool2d(1)  # 创建自适应平均池化层

    def forward(self, x):
        # 分割输入特征
        up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)
        up, low = self.squeeze1(up), self.squeeze2(low)

        # 上层特征转换
        Y1 = self.GWC(up) + self.PWC1(up)

        # 下层特征转换
        Y2 = torch.cat([self.PWC2(low), low], dim=1)

        # 特征融合
        out = torch.cat([Y1, Y2], dim=1)
        out = F.softmax(self.advavg(out), dim=1) * out
        out1, out2 = torch.split(out, out.size(1) // 2, dim=1)
        return out1 + out2

# 自定义 ScConv(Squeeze and Channel Reduction Convolution)模型
class ScConv(nn.Module):
    def __init__(self, op_channel:int, group_num:int = 16, gate_treshold:float = 0.5, alpha:float = 1/2, squeeze_radio:int = 2, group_size:int = 2, group_kernel_size:int = 3):
        super().__init__()  # 调用父类构造函数

        self.SRU = SRU(op_channel, group_num=group_num, gate_treshold=gate_treshold)  # 创建 SRU 层
        self.CRU = CRU(op_channel, alpha=alpha, squeeze_radio=squeeze_radio, group_size=group_size, group_kernel_size=group_kernel_size)  # 创建 CRU 层

    def forward(self, x):
        x = self.SRU(x)  # 应用 SRU 层
        x = self.CRU(x)  # 应用 CRU 层
        return x

if __name__ == '__main__':
    x       = torch.randn(1, 32, 16, 16)  # 创建随机输入张量
    model   = ScConv(32)  # 创建 ScConv 模型
    print(model(x).shape)  # 打印模型输出的形状

 

 


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分