使用MM32F0270 定时器DMA方式输出PWM

电子说

1.3w人已加入

描述

对于控制步进电机来说,最重要的控制参数是脉冲的数量和频率,两者结合可以实现满足要求的电机加减速曲线。在一些电机应用数量不多的场合,通常使用定时器中断发送脉冲来控制步进电机,优点是原理简单代码易于实现。但是一旦控制的电机多起来,就会占用大量的MCU资源,这在大多数情况下是不可接受的,更不用说多轴联动了。那么如何做到占用很少的MCU资源,又能实现脉冲发送的精确控制?

于是就想到了使用DMA功能更新PWM的输出, DMA全称Direct Memory Access,即直接存储器访问。DMA传输将数据从一个地址空间复制到另一个地址空间,提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。它允许不同速度的硬件装置来沟通,而不需要依赖于MPU的大量中断负载。

通过设置DMA传输数据的数量,可以控制发送的脉冲数。通过设置不同的装载值和顺序,可以使用不同频率和脉宽。当需要发送较多数量的脉冲时,则可以使用DMA传输完成中断中切换DMA传输的数据起始地址及发送数量,继续发送。这个方法即方便,又减轻MPU的负担,可以同时驱动多个电机工作,还可以根据电机的启动、运行、停止使用不同的频率。

定时器DMA模式

MM32F0270的定时器TIM1、TIM2、TIM3、TIM15、TIM16/17有DMA模式,能够在发生单个事件时生成多个DMA 请求。主要目的是在没有软件开销的情况下,多次重新编程定时器的一部分,也可以用于按周期读取数个寄存器。下面以TIM1为例介绍:

TIM1_DCR 和 TIM1_DMAR 寄存器跟 DMA 模式相关。DMA 控制器的目标是唯一的,必须指向TIM1_DMAR 寄存器。开启 DMA 使能后,在给定的 TIM1 事件发生时, TIM1 会给 DMA 发送请求。

对 TIM1_DMAR 寄存器的每次写操作都被重定向到一个 TIM1 寄存器。TIM1_DCR寄存器的DBL位定义了DMA连续传送的长度,即传输寄存器数量;当对TIM1_DMAR进行读写操作时,定时器识别 DBL,确定传输的寄存器数量。TIM1_DCR 寄存器的 DBA 位定义了DMA 传输的基地址, 定义从 TIM1_CR1 寄存器地址开始的偏移量(00000 为 TIM1_CR1;00001 为TIM1_CR2;……; 00110 为 TIM1_CCMR1 等)。

通过定时器的DMA模式来更新PWM,本文参官网例程“TIM1_DMA_UPData”进行说明具体实现方法。

实验

本实验使用TIM1的DMA模式,当更新事件发生时,更新 TIM1_CCR1、TIM1_CCR2 和 TIM1_CCR3 寄存器的内容。程序中配置TIM1的通道1、通道2、通道3输出PWM,再通过DMA搬运数据来改变PWM的占空比。定时器每产生一个溢出事件(即计数完成),就发送DMA请求,根据数据在数组中的排列顺序以生成所需要的时序。

程序部分

GPIO初始化

配置TIM1_CH1、TIM1_CH2 和 TIM1_CH3对应的GPIO。

 

void TIM1_GPIO_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct;
    RCC_AHBPeriphClockCmd(RCC_AHBENR_GPIOA, ENABLE);
    GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_2);
    GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_2);
    GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_2);
    GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA,  GPIO_InitStruct);
}

 

TIM1 DMA初始化

TIM1_CH3对应DMA1通道5,将data[]中的数据传送到TIM1_DMAR寄存器,传输方向从存储器到外设,数据宽度为半字,使能DMA传输完成中断。

 

void TIM_DMA_Init(void)
{
    DMA_InitTypeDef  DMA_InitStruct;

    RCC_AHBPeriphClockCmd(RCC_AHBENR_DMA1, ENABLE);

    DMA_DeInit(DMA1_Channel5);
    DMA_StructInit( DMA_InitStruct);
    //Transfer register address
    DMA_InitStruct.DMA_PeripheralBaseAddr    = (u32)   (TIM1->DMAR);
    //Transfer memory address
    DMA_InitStruct.DMA_MemoryBaseAddr        = (u32)data;
    //Transfer direction, from memory to register
    DMA_InitStruct.DMA_DIR                   = DMA_DIR_PeripheralDST;
    DMA_InitStruct.DMA_BufferSize            = 6;
    DMA_InitStruct.DMA_PeripheralInc         = DMA_PeripheralInc_Disable;
    //Transfer completed memory address increment
    DMA_InitStruct.DMA_MemoryInc             = DMA_MemoryInc_Enable;
    DMA_InitStruct.DMA_PeripheralDataSize    = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStruct.DMA_MemoryDataSize        = DMA_MemoryDataSize_HalfWord;
    DMA_InitStruct.DMA_Mode                  = DMA_Mode_Circular;
    DMA_InitStruct.DMA_Priority              = DMA_Priority_High;
    DMA_InitStruct.DMA_M2M                   = DMA_M2M_Disable;
    DMA_InitStruct.DMA_Auto_reload = DMA_Auto_Reload_Disable;
    DMA_Init(DMA1_Channel5,  DMA_InitStruct);

    DMA_ITConfig(DMA1_Channel5, DMA_IT_TC, ENABLE);

}

 

TIM1 PWM初始化

TIM1输出PWM,配置时钟分频系数和预装载值,递增计数,使用PWM模式1,输出高电平有效,分别对TIM1_CH1、TIM1_CH2、TIM1_CH3指定要加载到捕获比较寄存器中的脉冲值为arr/2、arr/4、arr/6,使能TIM1的DMA模式,起始地址为TIM1_CCR1,传输长度为3。

 

void TIM1_PWM_Init(u16 arr, u16 psc)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStruct;
    TIM_OCInitTypeDef  TIM_OCInitStruct;

    RCC_APB2PeriphClockCmd(RCC_APB2ENR_TIM1, ENABLE);

    TIM_TimeBaseStructInit( TIM_TimeBaseStruct);
    TIM_TimeBaseStruct.TIM_Period = arr;
    TIM_TimeBaseStruct.TIM_Prescaler = psc;
    //Setting Clock Segmentation
    TIM_TimeBaseStruct.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_TimeBaseStruct.TIM_RepetitionCounter = 0;
    ///TIM Upward Counting Mode
    TIM_TimeBaseStruct.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(TIM1,  TIM_TimeBaseStruct);

    TIM_OCStructInit( TIM_OCInitStruct);
    //Select Timer Mode: TIM Pulse Width Modulation Mode 2
    TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High;

    //Setting the Pulse Value of the Capture Comparison Register to be Loaded
    TIM_OCInitStruct.TIM_Pulse = arr / 2;
    TIM_OC1Init(TIM1,  TIM_OCInitStruct);
    TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);

    TIM_OCInitStruct.TIM_Pulse = arr / 4;
    TIM_OC2Init(TIM1,  TIM_OCInitStruct);
    TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);

    TIM_OCInitStruct.TIM_Pulse = arr / 6;
    TIM_OC3Init(TIM1,  TIM_OCInitStruct);
    TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);

    TIM_ARRPreloadConfig(TIM1, ENABLE);

    TIM_DMAConfig(TIM1, TIM_DMABase_CCR1, TIM_DMABurstLength_3Bytes);
    TIM_DMACmd(TIM1, TIM_DMA_Update, ENABLE);
    TIM_CtrlPWMOutputs(TIM1, ENABLE);

    TIM_Cmd(TIM1, ENABLE);
}

 

使能DMA1通道5

 

DMA_Cmd(DMA1_Channel5, ENABLE);

 

配置NVIC

 

NVIC_Configure(DMA1_Channel4_5_6_7_IRQn, 1, 1);

 

DMA1中断服务子程序

 

void DMA1_Channel4_5_6_7_IRQHandler()
{
    if (DMA_GetITStatus(DMA1_IT_TC5)) {
        //clear IRQ flag
        DMA_ClearITPendingBit(DMA1_IT_TC5);
    }
}

 

定义数组data[]

 

static u16 data[] = {2000, 3000, 4000, 8000, 7000, 6000};

 

Main()函数

 

s32 main(void)
{
    TIM1_GPIO_Init();
    TIM1_PWM_Init(10000, 0);
    TIM_DMA_Init();
    NVIC_Configure(DMA1_Channel4_5_6_7_IRQn, 1, 1);
    DMA_Cmd(DMA1_Channel5, ENABLE);
    while (1) {
    }
}

 

演示

下载程序到目标板。连接逻辑分析仪测试PA8、PA9、PA10的输出,打开对应上位机软件启动采样,运行程序,各通道的PWM输出情况如下:

PWM

截取其中1个周期观察:

PWM

TIM1_CH1输出PWM占空比为20%和80%, TIM1_CH1输出PWM占空比为30%和70%, TIM1_CH1输出PWM占空比为40%和60%,运行结果和预期一致。

实验简单演示了MM32F0270的定时器TIM1的DMA方式更新PWM,通过该方案可以实现多路、不同频率、不同脉宽、数量精确可控的PWM波。

工程路径如下:

~ MM32FMM32F0270_Lib_SamplesMM32F0270_SamplesLibSamplesTIMTIM1_DMA_UPData。

来源:灵动MM32MCU
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理

审核编辑 黄宇

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分