放大电路的基础—单级放大器(1)

电子说

1.2w人已加入

描述

放大是模拟电路的基本功能之一,是运算放大器、功率放大器、低噪声放大器等模块的主要功能。本文将讨论放大电路的基础——单级放大器。

根据输入输出信号的位置,单级放大器可以分为具有不同特点四大类:共源、共漏(源跟随器)、共栅以及共源共栅。根据放大器的负载不同,同类的单级放大器也具有不同的特点。

我的想法是写一篇通俗易懂的文章,对于单级放大器的分析,我想可以从MOS工作条件以及增益的推导两个方面展开。

一、共源级(Common-Sourse Stage)

共源级放大器将MOS管栅极输入信号(栅源电压的变化)转化成MOS管漏极输出信号(漏极电流变化),电流变化通过负载从而产生输出电压信号。

1.电阻负载的共源级

偏置电压

图1.1.1 电阻负载的共源级

对于放大电路,我们关心用作放大的MOS是否工作在饱和区。

先考虑工作条件,M1工作在饱和区:Vin不能太小,为了确保M1导通,必须有Vin>VTH;Vin也不能太大,为了确保M1不进入线性区,必须有Vin-VTH

Vin>VTH1

Vin-VTH1out

对于放大电路,增益是我们需要关心的指标。

不做数学推导,我们从物理上理解放大器产生增益的原理:小信号电压Vin由M1的栅极输入,由M1的跨导转化成小信号电流经过负载产生输出电压。那我们想知道增益,就只需要知道MOS的跨导以及负载等效电阻。

小信号电流:

Iout=gm1Vin

负载为M1与RD并联:

Rout=RD||ro1

输出电压:

V out =IoutR **out=gm1Vin(RD||ro1) **

那么增益的大小就是:

|Av|=Vout/Vin=gm1(RD||ro1) ****

输出电流与输出电压参考方向不同,输入与输出是反相的。

Av=-gm1(RD||ro1) ****

2.二极管连接型器件作为负载的共源级

偏置电压

图1.2.1 二极管连接型器件作为负载的共源级

电阻负载的共源级虽然简单,但CMOS工艺制作的电阻精确度往往很低,在实际工程中很少用到。而使用CMOS工艺制作一个晶体管是非常简单的,因此可以用图1.2.1中的二极管连接型MOS替代电阻作为负载。

考虑工作条件:

若电路能导通,M2作为二极管连接型器件无条件满足工作在饱和区;M1工作在饱和区需满足:

Vin>VTH1

** Vin-VTH1outDD -V**TH2

讨论增益:

M2的衬底与源极存在电位差,需考虑衬底偏置效应(体效应),利用与推导电阻负载的共源级的方法可以得到二极管连接型器件作为负载的共源级的增益:

Av=-gm1[1/(gm2******+g mb2 ) ||ro1]**********

电阻ro1较大,并联时可简化忽略:

** Av=-gm1 **/(g m2 +g mb2 )

这个增益一般很小,两个MOS的跨导的比值也就是两个MOS的尺寸的比值,若要实现100倍、1000倍甚至更大的增益,两个MOS的尺寸之比就会很大。

对于二极管连接型器件作为负载的共源级,拉扎维在第52页还提出了一个蛮有意思的问题,值得大家去思考一下。

3.电流源负载的共源级

偏置电压

图1.3.1 电流源负载的共源级

二极管连接型器件作为负载的共源级增益一般做不大,分析到这里,我们已经明白要提高增益的其中一个思路就是提高负载等效电阻,那我们把负各种各样可以放上去的负载一个一个试一下不就行了嘛!那我们放个工作在饱和区的MOS试试:

考虑工作条件:

很熟悉了,直接写:

Vin>VTH1VDD-Vb ** >|VTH2 ** |

** Vin-VTH1out******< VDD-|V b -V DD -V TH2 | ********

讨论增益:

负载为M1与M2的并联,负载等效电阻为:

Rout=ro1||ro2************

增益:

********** Av=-gm1(ro1||ro2******************** ) **************

ro1与ro2与沟道长度调制效应有关,正比于器件的沟道长度,增大L可以进一步提高增益,但代价就是版图面积增加。

4.线性区MOS负载的共源级

偏置电压

图1.4.1 线性区MOS负载的共源级

与电流源负载的共源级一样的电路,不同点在于M2工作在线性区。此时M2为压控电阻,通过调节Vb实现不同大小的电阻,与电阻负载的共源级没有本质上的不同。那是不是就可以解决CMOS工艺制作电阻不精确的问题了呢?别高兴太早,在模拟集成电路中,实现一个精准的偏置电压Vb其实并不容易。 外界条件,尤其是温度对器件的影响很大,而实现一个与温度无关的偏置电压需要更加复杂的电路实现

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分