电子说
高速硅光调制器主要采用载流子耗尽型的相移器,其工作时为反偏的PN结,由于其调制效率较低,对于Mach-Zehnder型调制器,相移器的典型长度2-3mm, 因此需要采用行波电极(traveling-wave electrode)来优化EO带宽,行波电极的设计主要优化三个方面: 1)RF信号的插损,2)RF信号与光信号的群速度匹配,3) RF信号的阻抗匹配。小豆芽检索到的两篇相关文献,分别实现了47GHz和60GHz的EO带宽。文献1和文献2都采用T型慢波TW电极,如下图所示,
两者采用的PN结结构也非常类似,MZM上下两臂的PN结串联在一起,采用push-pull的驱动方式。中间区域的p++/n++施加直流的bias偏压。
两个研究组后续都实现了单通道200Gbps的PAM4信号传输。
为了解决较长的TW电极带来的带宽限制,加拿大Laval研究组提出了分段TW电极的方式,将行波电极调制器的EO带宽提高到67GHz。其调制器设计如下图所示,包含三小段相移器,每一段相移器都有相应的行波电极。
北京大学研究组借助于Bragg光栅的慢光效应,提高了调制效率,相移器长度只有124um,其EO带宽达到110GHz以上,调制器结构如下图所示,
对于微环调制器,可以通过借助peaking效应提升EO带宽,Intel在OFC 2022报道了其最新的微环调制器设计,其3dB EO带宽为62GHz,如下图所示,并首次实现了基于微环调制器的240Gbps PAM4信号传输。
以上是对高速硅光调制器的简单整理,简单来说,目前硅基电光调制器的EO带宽可以达到60GHz以上,实现200Gbps以上的PAM4信号传输。
但是进一步提高其EO带宽,会存在一些困难。可以借助于一些特殊的光学结构,例如Bragg光栅型的慢光调制器,也可以借助于薄膜铌酸锂材料(LNOI)和BTO材料(BaTiO3)。
全部0条评论
快来发表一下你的评论吧 !