• 自身运动:描述自主车辆相对于世界坐标系的运动。
--提供反映自主车辆动态条件的信息,用于确定机动能力
--提供有关自主车辆当前运动的信息
--与目标轨迹一起考虑,共享自主车辆姿态信息,以生成执行器请求
--随时间变化的姿态,即平移和旋转速度以及加速度
• 执行器请求:向自主车辆的制动、转向和加速执行器发送控制输入。
• 执行器反馈:提供来自车辆执行器的反馈信号。
--应该向系统其他部分公开车辆运动约束,因为此反馈是必要的
--可以与各种外部执行模块接口,此反馈在单位、格式、类型等方面将有所不同
• 底盘传感器数据:提供运动相关信息的车辆内部传感器(例如轮速传感器、方向盘转角等)。
• IMU数据:由IMU提供的测量车辆加速度和旋转率。
• 罗盘数据:由磁力计提供的正北方位。
• GNSS数据:来自全球导航卫星系统(GNSS)的数据。包括以WGS84/GPS位置表示的地理参考位置估计(不确定性通常以米测量)。
--基于GNSS的位置信息,可能与校正服务的信息组合
--包括地理参考位置估计。可能已经包括自身运动估计
• 环境传感器数据:来自一个或多个环境传感器的规范数据。
--可能包括摄像头数据(可见光和/或红外波长)、雷达(飞行时间测量手势)、声纳(可听和/或超声)或其他传感模式
--注意:可能包括各种传感器输入的组合
• 车厢传感器数据:来自一个或多个车厢内传感器的数据。可以使用各种传感技术进行乘客监测。
--示例可能包括摄像头(可见光和红外波长)、雷达(手势/心跳检测)、音频和各种其他传感机制。
状况
• 任务反馈:关于任务状态的反馈,向车辆乘员/驾驶员提供通信。一个例子是系统请求驾驶员干预。通过HMI向车辆乘员提供当前任务的反馈。这可以包括诸如路线目标的进度、警告驾驶员接管控制或类似信息。
• 任务目标:可以反映复杂任务的用途表达,其目标是“到达目标目的地”,或者在更低的自动化级别,是一个更简单的目标,如“保持在当前车道的中心”。任务目标在行程中可能会改变。
• 路线目标:自主车辆将要走的路线描述,如果适用包括车道,以实现任务目标。描述每个交叉口的所需车道和转向。
• 机动:提供至少两个操作的列表,包括一个安全机动。机动表达为地图上的新位置,以及该位置的目标速度,并描述高层次的车辆运动行为(例如巡航、跟随、改道、转弯或停止)。
• 目标轨迹:是将机动分解为目标轨迹(曲线路径),其中沿轨迹路径表达转向、制动和加速的变化。
• 感兴趣区域:是世界空间中一个或多个区域的描述,感知应优先处理这些区域。这可以描述世界空间中感知应提供卓越性能(如果可能)的感兴趣区域。例如,这可以允许配置具有非均匀感知分辨率的传感器,从而特定感兴趣的道路/基础设施以更高分辨率“看到”。
• 动态对象:识别所有移动或可移动对象。例如车辆、行人或动物。
• 静态对象:识别所有不可移动对象或基础设施。静态对象仍可能具有与之相关的可改变状态。例如道路表面、路缘、锥桶、路标、交通灯、电子标志。或者甚至是一个基础设施元素,如可移动屏障(如收费站)。
• 动态对象预测:预测动态对象的路径。
• 静态对象预测:预测静态对象状态的变化,如交通灯变化的时序。
• 场景数据:提供当前场景的相关描述,用于确定自动驾驶系统是否在操作设计域内运行。一个例子是对自动驾驶系统尚未设计用以处理的被淹路面的注释。
• 姿态:描述自主车辆相对于地图的当前位置和方向。与地图信息一起使用以启用或改进高级驾驶员辅助系统(ADAS)的许多行为。
• 感知能力:给出自动驾驶系统动态感知能力的描述(例如某类实体的感知范围)。
• 系统完整性:提供车辆不同组件的运行状态报告,这些组件与自动驾驶系统的安全运行相关;来自与硬件和软件平台相关部分的派生。
全部0条评论
快来发表一下你的评论吧 !