在当前环境下,通常我们会首选redis缓存来减轻我们数据库访问压力。但是也会遇到以下这种情况:大量用户来访问我们系统,首先会去查询缓存, 如果缓存中没有数据,则去查询数据库,然后更新数据到缓存中,并且如果数据库中的数据发生了改变则需要同步到redis中,同步过程中需要保证 MySQL与redis数据一致性问题,在这个同步过程中出现短暂的数据延迟也是正常现象,但是最终需要保证mysql与缓存中的一致性。
//我们通常使用redis的逻辑
//通常我们是先查询reids
String value = RedisUtils.get(key);
if (!StringUtils.isEmpty(value)){
return value;
}
//从数据库中获取数据
value = getValueForDb(key);
if (!StringUtils.isEmpty(value)){
RedisUtils.set(key,value);
return value;
}
延迟双删策略是分布式系统中数据库存储和缓存数据保持一致性的常用策略,但它不是强一致。其实不管哪种方案,都避免不了Redis存在脏数据的问题,只能减轻这个问题,要想彻底解决,得要用到同步锁和对应的业务逻辑层面解决。
一般我们在更新数据库数据时,需要同步redis中缓存的数据 所以我们一般会给出两种方案:
1.不断重试----如果是在http协议接口中 会导致接口响应变慢 调用该接口 会发生响应超时 2.或者通过mq异步的形式同步
先进行缓存清除,再执行update,最后(延迟N秒)再执行缓存清除。进行两次删除,且中间需要延迟一段时间
RedisUtils.del(key);// 先删除缓存
updateDB(user);// 更新db中的数据
Thread.sleep(N);// 延迟一段时间,在删除该缓存key
RedisUtils.del(key);// 先删除缓存
上述中(延迟N秒)的时间要大于一次写操作的时间。原因:如果延迟时间小于写入redis的时间,会导致请求1清除了缓存,但是请求2缓存还未写入的尴尬。。。
在业务程序运行时,统计业务逻辑执行读数据和写缓存的操作时间,以此为基础来进行估算。因为这个方案会在第一次删除缓存值后,延迟一段时间再次进行删除,所以称为“延迟双删”。
延迟双删策略只是一种同步数据库与缓存的手段,在系统并发量不高的情况下可以使用这种方式解决。
全部0条评论
快来发表一下你的评论吧 !