相信响应式编程经常会在各种地方被提到。本篇就为大家从函数式编程一直到Spring WeFlux做一次简单的讲解,并给出一些示例,希望大家可以更好的理解响应式编程,可以在合适的时机运用到实际项目中。
了解响应式编程,首先我们需要了解函数式操作和Stream的操作,下面我们简单的复习一下喽。
函数式接口中
我们先来回顾一下Java中的函数式接口。常见的有以下几种
上面的简单函数式接口示例如下:
Consumer consumer = (i)- > System.out.println("this is " + i);
consumer.accept("consumer");
Supplier supplier = () - > "this is supplier";
System.out.println(supplier.get());
Function< Integer,Integer > function = (i) - > i*i;
System.out.println(function.apply(8));
BiFunction< Integer,Integer,String > biFunction = (i,j)- > i+"*"+j+"="+i*j;
System.out.println(biFunction.apply(8,8));
Predicate< Integer > predicate = (i) - > i.intValue() >3;
System.out.println(predicate.test(5));
其执行结果如下:
this is consumer
this is supplier
64
8*8=64
true
对Stream进行操作,主要有几个关键点:
创建流的示例:
String[] strArray = {"ss","ss","","sdffg"};
Arrays.stream(strArray).forEach(System.out::println);
Arrays.asList(strArray).stream().forEach(System.out::println);
Stream.of(strArray).forEach(System.out::println);
Stream.iterate(1,(i) - > i+1).limit(10).forEach(System.out::println);
Stream.generate(() - > new Random().nextInt(10)).limit(10).forEach(System.out::println);
简单的流处理示例:
String[] strArray1 = {"ss","ss","","sdffg","bca-de","fff"};
String collect = Stream.of(strArray1)
.filter(i - > !i.isEmpty())//过滤空字符串
.sorted() //排序
.limit(1) //只取第一个元素
.map(i - > i.replace("-", ""))//替换 "-"
.flatMap(i - > Stream.of(i.split("")))//将字符拆成字符数组
.sorted() //排序
.collect(Collectors.joining());//将字符拼接组合到一起
System.out.println(collect);//最后输出abcde
响应式编程会用到一个发布者和一个订阅者,然后通过订阅关系完成数据流的传输。订阅关系中可以处理一些背压问题,即调节消费者与生产者之间的供需平衡,让整个程序达到最大效率。
Java9中java.util.concurrent.Flow接口提供响应式流编程类似的功能。
下面我们实现一个基于Java 响应式编程的示例:
其中有三个简单步骤:
SubmissionPublisher publisher = new SubmissionPublisher< >();//建立生产者
Flow.Subscriber subscriber = new Flow.Subscriber() {...};//建立消费者 (其中的实现放到下面)
publisher.subscribe(subscriber);//订阅关系
for (int i = 0; i < 10; i++) {
publisher.submit("test reactive java : " +i); //生产者生产内容
}
消费者全部代码如下:
Flow.Subscriber subscriber = new Flow.Subscriber() {
Flow.Subscription subscription;
@Override
public void onSubscribe(Flow.Subscription subscription) {
System.out.println("Subscription establish first ");
this.subscription = subscription;
this.subscription.request(1);
}
@Override
public void onNext(Object item) {
subscription.request(10);
System.out.println("receive : "+ item);
}
@Override
public void onError(Throwable throwable) {
System.out.println(" onError ");
}
@Override
public void onComplete() {
System.out.println(" onComplete ");
}
};
其中onSubscribe方法表示建立订阅关系
onNext接受数据,并请求生产者的数据。
onError,onComplete则是error或者完成之后的处理方法。
Reactive Stream 通常会基于如下的模型:
下面我们实现一个带有中间处理功能的响应式模型:
下面的Processor 既有发布者,又有订阅者:
public class ReactiveProcessor extends SubmissionPublisher implements Flow.Subscriber {
private Flow.Subscription subscription;
@Override
public void onSubscribe(Flow.Subscription subscription) {
System.out.println( Thread.currentThread().getName() + " Reactive processor establish connection ");
this.subscription = subscription;
this.subscription.request(1);
}
@Override
public void onNext(Object item) {
System.out.println(Thread.currentThread().getName() + " Reactive processor receive data: "+ item);
this.submit(item.toString().toUpperCase());
this.subscription.request(1);
}
@Override
public void onError(Throwable throwable) {
System.out.println("Reactive processor error ");
throwable.printStackTrace();
this.subscription.cancel();
}
@Override
public void onComplete() {
System.out.println(Thread.currentThread().getName() + " Reactive processor receive data complete ");
}
}
如上中间处理器订阅发布者, 同时消费者再订阅中间处理器。中间处理器也可以调节发布订阅的生产消费速率。
SubmissionPublisher publisher = new SubmissionPublisher< >(); //创建生产者
ReactiveProcessor reactiveProcessor = new ReactiveProcessor(); // 创建中间处理器
publisher.subscribe(reactiveProcessor); //中间处理器订阅生产者
Flow.Subscriber subscriber = new Flow.Subscriber() {...}; //创建消费者
reactiveProcessor.subscribe(subscriber); //消费者订阅中间处理器
for (int i = 0; i < 10; i++) {
publisher.submit("test reactive java : " +i); //生产者生产数据
}
通过上述生产者-> 中间处理器->消费者, 可以将生产者生产的数据全部变成大写,然后再发送给最终的消费者。
以上式Java中的reactive 编程示例。Java会不同线程来分别处理消费者与生产者的消息处理
Reactor中两个比较关键的对象式Flux和Mono, 整个Spring的响应式编程均式基于projectreactor项目。Reactor是响应式编程的依赖,主要是基于JVM构建非阻塞程序。
根据Reactor的介绍,此类响应式编程的的三方库(Reactor)主要是解决一些JVM经典异步编程中的一些缺点,并且还可以专注于一些新的特性,如下:
其中有这么一段解释,可以形象的说明响应式编程。
Reactive的程序可以想象成车间的流水线,reactor既是流水线上的传送带,又是处理工作站。原料从一个原始的生产者出发,最终成为产品被推总给消费者。
下面我们介绍一下Flux和Mono。
在Reactor中Flux和Mono均是Publisher,即生产者。两者也有不同。Flux对象表示0到N个异步的响应序列,而Mono只代表0个(empty)或者1个结果。
Reactor官网上介绍的Flux示意如下:
Mono示意如下:
我们也可以单独引用其依赖。
使用maven依赖
< dependencies >
< dependency >
< groupId >io.projectreactor< /groupId >
< artifactId >reactor-core< /artifactId >
< /dependency >
< dependency >
< groupId >io.projectreactor< /groupId >
< artifactId >reactor-test< /artifactId >
< scope >test< /scope >
< /dependency >
< /dependencies >
分别创建空Mono和一个包含一个String的Mono,并由消费者消费打印。
Mono.empty().subscribe(System.out::println);
Mono.just("Hello Mono Java North").subscribe(System.out::print);
Flux创建有如下的一些方法,
下面式一些Java代码示例
Flux.just(1,2,3,4,5).subscribe(System.out::print);
Flux.range(1,20).subscribe(System.out::print);
Flux.fromArray(new String[]{"a1","a2","a3","a4","a5","a6"}).skip(2).subscribe(System.out::print);
Flux.fromIterable(Arrays.asList(1,2,3,4,5,6,7)).subscribe(System.out::println);
Flux.fromStream(Stream.of(Arrays.asList(1,2,3,4,5,6,7))).subscribe(System.out::print);
我们再举一个generate的例子
public static < T, S > Flux< T > generate(Callable< S > stateSupplier, BiFunction< S, SynchronousSink< T >, S > generator)
如上代码所示,generate需要一个Callable参数,而且是supplier (即没有输入值,只有一个输出)
另一个参数是BiFunction (前面我们也介绍过,需要两个输入值,一个输出值)。BiFunction中的其中一个输入值是SynchronousSink,下面我们给出一个generate创建Flux的示例。
Flux.generate(
() - > 0, //提供一个初始状态值0
(i, sink) - > {
sink.next("3*" + i + "=" + 3 * i);//使用初始值去生产一个3的乘法
if (i > 9) sink.complete();//设置停止条件
return i + 1;//返回一个新的状态值,以便在下一次的生产中使用,除非响应序列终止
}).subscribe(System.out::println);
下面我们在看一个Flux嵌套处理示例:
需求:将字符串去空格,并去重,然后排序输出。
String str = "qa ws ed rf tg yh uj i k ol p za sx dc vf bg hn jm k loi yt ";
Flux.fromArray(str.split(" "))//通过数组创建Flux
.flatMap(i - > Flux.fromArray(i.split("")))
.distinct() // 去重
.sort() //排序
.subscribe(System.out::print);
//flatMap与Stream中的flatMap类似,接受Function作为参数,输入一个值,输出一个值,此处输出均为Publisher,
以上就是Flux和Mono的一些简单介绍,同时Ractor也支持JDK中的FlowPubliser 和FlowSubscriber与 Reactor中的publisher, subscriber的适配等.
SpringBoot 2之后支持的Reactive响应式编程。
关于Reactive技术栈和经典的Servlet技术栈对比,Spring官网的这张图比较清晰。
Spring响应式编程主要依赖于Reactor第三方库,即上面讲的Flux和Mono的库。
WebFlux主要有以下几个要点:
下面我们给出几个SpringBoot 的响应式web示例。
可以去https://start.spring.io/ 新建webflux的项目也可以。
项目中的主要依赖就是spring-boot-starter-webflux
< dependency >
< groupId >org.springframework.boot< /groupId >
< artifactId >spring-boot-starter-webflux< /artifactId >
< /dependency >
以下是一个最简单的基于注解的WebFlux
@GetMapping("/hello/mono1")
public Mono< String > mono(){
return Mono.just("Hello Mono - Java North");
}
@GetMapping("/hello/flux1")
public Flux< String > flux(){
return Flux.just("Hello Flux","Hello Java North");
}
创建RouterFunction,将其注入到Spring中即可。
@Bean
public RouterFunction< ServerResponse > testRoutes1() {
return RouterFunctions.route().GET("/flux/function", new HandlerFunction< ServerResponse >() {
@Override
public Mono< ServerResponse > handle(ServerRequest request) {
return ServerResponse.ok().bodyValue("hello web flux , Hello Java North");
}
}).build();
}
//上面的方法使用函数式编程替换之后如下
@Bean
public RouterFunction< ServerResponse > testRoutes() {
return RouterFunctions.route().GET("/flux/function",
request - > ServerResponse.ok()
.bodyValue("Hello web flux , Hello Java North")).build();
}
下面我们编写一段返回Mono的响应式Web服务。
@GetMapping("/hello/mono")
public Mono< String > stringMono(){
Mono< String > from = Mono.fromSupplier(() - > {
try {
TimeUnit.SECONDS.sleep(5);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
return "Hello, Spring Reactive date time:"+ LocalDateTime.now();
});
System.out.println( "thread : " + Thread.currentThread().getName()+ " === " + LocalDateTime.now() +" ==========Mono function complete==========");
return from;
}
使用postman请求如下, 5秒钟后返回数据。后台却在5秒中之前已经处理完整个方法。
后台打印日志:
再看一组Flux
@GetMapping(value = "/hello/flux", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux< String > flux1(){
Flux< String > stringFlux = Flux.fromStream(IntStream.range(1,6).mapToObj(i - >{
mySleep(1);//表示睡1秒
return "java north flux" + i + "date time: " +LocalDateTime.now();
}));
System.out.println("thread : " + Thread.currentThread().getName()+ " === " + LocalDateTime.now() + " ==========Flux function complete=========");
return stringFlux;
}
此次使用谷歌浏览器请求此服务:
可以发现每隔一秒就会有一条消息被生产出来。
后台完成时间同样是在一开始就完成整个方法:
通过上述对Flux 与 Mono的例子,可以好好体会一下响应式编程。
本篇回顾了函数式编程,Stream操作等,然后再举例讲了Java中的Reactive编程示例, 同时也给处理Reactor三方库的Flux于Mono的示例。
最后使用了SpringBoot WebFlux 创建简单的响应式web服务。希望能让大家更好的理解响应式编程。
全部0条评论
快来发表一下你的评论吧 !